SYMMETRY IN MEASURE ALGEBRAS

BY ARTHUR B. SIMON

Communicated by Walter Rudin, July 4, 1960

It is well known that the measure algebra of a locally compact group \(G \) is not symmetric, i.e. the set of Gelfand transforms is not closed under complex conjugation. However, if these transforms are restricted to the character group \(\Gamma \), they are symmetric. In his paper [1] Rudin asks: Is there a set larger than the closure of \(\Gamma \) on which the transforms are symmetric?

If \(G \) is the real line the answer is yes.

Let \(G \) be the real line; we consider the algebra \(M(G) \) of all regular Borel measures with convolution as multiplication. The maximal ideal space \(\mathcal{M} \) of \(M(G) \) is compact and \(\Gamma \) (also the real line) is an open subset of \(\mathcal{M} \). Let \(S \) be the largest subset of \(\mathcal{M} \) on which the Gelfand transforms are closed under conjugation.

Let \(Q \) be an independent, compact, perfect set (of Lebesgue measure 0) which supports a positive measure \(\sigma \) whose Fourier-Stieltjes transform vanishes at infinity (see [2]). Without loss of generality we may suppose that the

\[
\sup \{ |\hat{\gamma}(y)| : \gamma \in \Gamma \} = \sup \left\{ \left| \int_{-\infty}^{\infty} e^{iyx} d\sigma(x) \right| : y \in G \right\} = 1.
\]

Now let \(U = \{ h \in \mathcal{M} : |\hat{\sigma}(h)| < 1/4 \} \). Since \(\sigma \) vanishes at infinity the set \(A = \Gamma - U \) is compact.

Pick an absolutely continuous measure \(\lambda \) so that \(\lambda = 1 \) on \(A \).

We are now in position to define a member of \(S \) which is not in the closure of \(I \). We define a function to be identically \(-1\) on all of \(Q \) but one point \(x \), and there its value is \(+1\). Since \(Q \) is independent we can extend this function to a homomorphism \(\chi_x \) on \(G \) to the circle group; since \(Q \) is perfect \(\chi_x \) is not continuous but, clearly, \(\chi_x \) is \(\sigma \)-measurable. Now let \(H = \{ \mu \in M(G) : \chi_x \text{ is } \mu \text{-measurable} \} \) and let \(I = \{ \phi \in M(G) : \phi \perp \mu \text{ for every } \mu \in H \} \). Šreider [3] has shown that \(H \) is an algebra, \(I \) is an ideal and \(M(G) = H + I \) (direct sum). Now pick \(\chi_0 \in A \) such that \(|\hat{\chi}(\chi_0)| > 3/4 \); and define \(\hat{h}_0(\mu) = \mu(h_0) = \int \chi_0(x) d\mu_H(x) \), where \(\mu_H \) is the projection of \(\mu \) on \(H \). It can be shown that \(\hat{h}_0 \in S \) (since \(H \) is self-adjoint) and that \(\lambda \in I \) (since \(\chi_x \) is not continuous); thus if we let \(W \) be the neighborhood of \(h_0 \) determined by \(\sigma \), \(\lambda \), and \(1/4 \), then \(W \cap \Gamma = \phi \) and the result is proved.

1 This research was supported by the Air Force Office of Scientific Research Contract No. 49(638)383.
Remark. Obviously the more general theorem is true: Let G be a locally compact abelian group. If there is a singular measure μ on G whose (Gelfand) transform vanishes on the boundary of the character group Γ and there exists a noncontinuous character on G which is μ-measurable, then $S \neq \Gamma$.

References

