RESEARCH ANNOUNCEMENTS

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited.

POLYHEDRAL HOMOTOPY-SPHERES

BY JOHN R. STALLINGS

Communicated by Edwin Moise, July 18, 1960

It has been conjectured that a manifold which is a homotopy sphere is topologically a sphere. This conjecture has implications, for example, in the theory of differentiable structures on spheres (see, e.g., [3, p. 33]).

Here I shall sketch a proof of the following theorem:

Let M be a piecewise-linear manifold of dimension $n \geq 7$, which has the same homotopy-type as the n-sphere S^n. Then there is a piecewise-linear equivalence of $M - \{\text{point}\}$ with euclidean n-space; in particular, M is topologically equivalent to S^n.

This theorem is not the best possible, for C. Zeeman has been able to refine the method presented here so as to prove the same theorem for $n \geq 5$.

A piecewise-linear n-manifold is a polyhedron with a linear triangulation satisfying the condition that the link of each vertex is combinatorially equivalent to the standard $(n-1)$-sphere; all the manifolds with which I am concerned here have no boundary. In general, all the spaces in this paper will be polyhedra, finite or infinite, and each map will be polyhedral, i.e., induced by a simplicial map of linear triangulations.

Let K be a finite subpolyhedron of the finite polyhedron L; let K' be a finite subpolyhedron of the finite polyhedron L'; let $f: L \rightarrow L'$ be a polyhedral map. f is called a relative equivalence $(L, K) \Rightarrow (L', K')$, if $f(K) \subset K'$ and $L - K$ is mapped by f in a 1-1 manner onto $L' - K'$.

Recall J. H. C. Whitehead's definition of contraction [7, p. 247]: If the simplicial complex A has a simplex σ_0 which is the face of just one simplex τ_{p+1}, and B is the simplicial complex obtained from A by removing the open simplexes σ_0 and τ_{p+1}, then $A \rightarrow B$ is called an elementary contraction at σ_0. A finite sequence of elementary contractions is a contraction.

If K is a finite subpolyhedron of the finite polyhedron L, then it is said that L contracts onto K, if there is a linear triangulation A of L.

1 The author has a fellowship of the National Science Foundation, U.S.A.
such that a subcomplex B of A triangulates K, and such that $A \to B$ is a contraction.

Lemma 1. If L contracts onto K and (L, K) is a relative equivalence, then L' contracts onto K'.

This can be shown by the methods of Whitehead [cf. 6, Theorem 1; 7, Theorem 6 and Theorem 7].

Lemma 2. Let M be a piecewise-linear manifold, and let L be a subpolyhedron which contracts onto $K \subseteq L$, and let U be a neighborhood of K in M. Then there is a piecewise-linear equivalence $h: M \to M$, such that $h(U)$ is a neighborhood of L [cf. 7, Theorem 23].

The proof can be reduced to the case where $B \subseteq A \subseteq C$ are triangulations of $K \subseteq L \subseteq M$ respectively, and $A \to B$ is an elementary contraction at σ^p. It can then be reduced, due to the local euclidean nature of M and the local nature of an elementary contraction, to the case when M is euclidean space; the proof in this case is obvious.

An n-element E is a polyhedron equivalent to the standard geometric n-simplex. Int E will denote the subset of E which corresponds to the interior of the n-simplex.

The following lemma was noticed, for $n = 3$, by Moise [4].

Lemma 3. Let the polyhedron M contain two n-elements E_1 and E_2, such that $M = \text{Int } E_1 \cup \text{Int } E_2$. Then $M - \{\text{point}\}$ is piecewise-linearly equivalent to euclidean n-space; in particular M is topologically a sphere.

This can be proved by the methods of B. Mazur [2] or M. Brown [1].

If K is a finite polyhedron and Q is the nonsingular join of K to a point x, then Q is called the cone on K with vertex x. If L is a finite subpolyhedron of K, then the cone Q_l on L with vertex x is called a subcone of Q.

Lemma 4. A cone Q contracts onto any subcone Q_l.

Lemma 5. If P is a finite subpolyhedron of the cone Q, and dim $P \leq p$, then there is a subcone Q_l of Q, such that $P \subseteq Q_l$ and dim $Q_l \leq p + 1$.

"dim" denotes dimension. The proofs of Lemmas 4 and 5 are elementary.

Let K be a finite polyhedron, M an n-manifold, and $f: K \to M$ a polyhedral map. Then K is the union of a finite number of convex sets $\{\gamma_i\}$, on each of which f is linear. f is said to be in general position if there exists such $\{\gamma_i\}$ that for all i, j,
(1) If \(\dim \gamma_i + \dim \gamma_j < n + \dim \gamma_i \cap \gamma_j \), then \(f|_{\gamma_i \cup \gamma_j} \) is 1-1;
(2) If \(\dim \gamma_i + \dim \gamma_j \geq n + \dim \gamma_i \cap \gamma_j \), then \(\dim (\gamma_i \cap f^{-1} \gamma_j) \leq \dim \gamma_i + \dim \gamma_j - n \).

The singular set of \(f: K \to M \), \(S(f) \), is the closure in \(K \) of the set \(\{ x \in K | f^{-1}(x) \) contains more than one point \}. The following lemma follows from property 2 of general position.

Lemma 6. If \(K \) is \(k \)-dimensional, and \(f: K \to M \) is in general position, where \(M \) is an \(n \)-dimensional manifold, then \(\dim S(f) \leq 2k - n \).

Lemma 7. If \(K \) is a subpolyhedron of \(L \), and \(M \) is a manifold, and \(f: L \to M \) is a map such that \(f|_{K} \) is in general position, then there is a map in general position \(g: L \to M \) such that \(g|_{K} = f|_{K} \).

The proof is obtained by localizing to the well-known proof for the case that \(M \) is a euclidean space (cf. [5]).

Lemma 8 (Penrose-Whitehead-Zeeman [5]). Let \(A \) be a subpolyhedron of the manifold \(M \), with \(2(\dim A + 1) \leq \dim M = n \), and let \(A \) be contractible to a point in \(M \). Then \(A \) is contained in the interior of an \(n \)-element in \(M \).

The proof consists in embedding the cone on \(A, Q, \) in \(M \). There exists a map \(f: Q \to M \), such that \(f|_{A} = \text{inclusion} \); by Lemma 7, assume \(f \) is in general position. By Lemma 6, \(f \) will be nonsingular except in the case \(2(\dim A + 1) = \dim M \), when there will be 0-dimensional singularities, which can be removed by a trick. Hence \(Q \subset M \); \(Q \) contracts to a point; a point in \(M \) is contained in the interior of an \(n \)-element. By Lemma 2, \(Q \) (and hence \(A \)) is contained in the interior of an \(n \)-element.

Let \(T \) be a linear triangulation of an \(n \)-manifold \(M \); \(T_p \) will denote the \(p \)-skeleton. \(T^* \) will denote the dual cell complex; \(T^*_q \) its \(q \)-skeleton.

Lemma 9. Let \(T \) be a linear triangulation of the \(n \)-manifold \(M \); let \(U \) and \(V \) be neighborhoods of \(T_p \) and \(T^*_q \) respectively, where \(p + q \geq n - 1 \). Then there is a polyhedral equivalence \(g: M \to M \), such that \(M = U \cup gV \).

This is proved by embedding \(M \) nicely in the join of \(T_p \) and \(T^*_q \) and applying a similar, elementary, lemma to that join.

Proof of Theorem.

(a) Case. \(n = 2k + 1, n \geq 7 \).

Let \(T \) be a linear triangulation of \(M \). Let \(Q \) be the cone on \(T_k \).
Let \(f: Q \to M \) be a map in general position such that \(f|_{T_k} \) is the inclusion of \(T_k \) into \(M \); such a map exists by Lemma 7 and the fact that \(M \) is \(k \)-connected.
By Lemma 6, since \(\dim Q = k + 1 \), and \(\dim M = 2k + 1 \), it follows that \(\dim S(f) \leq 1 \). By Lemma 5, there is a subcone \(Q_1 \subset Q \), such that \(S(f) \subset Q_1 \) and \(\dim Q_1 \leq 2 \).

By the theorem of Penrose, Whitehead, and Zeeman (Lemma 8), since \(\dim fQ_1 \leq 2 \) and \(\dim M \geq 6 \), there is an \(n \)-element \(E \subset M \) containing \(fQ_1 \) in its interior.

\(Q \) contracts into \(Q_1 \) (Lemma 4); since \(S(f) \subset Q_1 \), \(f \) defines a relative equivalence \((Q, Q_1) \Rightarrow (fQ, fQ_1)\); by Lemma 1, \(fQ \) contracts onto \(fQ_1 \). Since \(\text{Int} E \) is a neighborhood of \(fQ_1 \), by Lemma 2, there is a piecewise-linear homeomorphism \(h: M \to M \) such that \(fQ \subset h(\text{Int} E) \).

Hence \(\Delta_0 = h E \) is an \(n \)-element which is a neighborhood of \(fQ \). \(T_k \subset fQ \); hence \(\Delta_0 \) is a neighborhood of \(T_k \).

Similarly, an \(n \)-element \(\Delta_0^* \) may be found, which is a neighborhood of \(T_k^* \).

By Lemma 9, there is a piecewise-linear homeomorphism \(g: M \to M \) such that \(M = \text{Int} \Delta_0 \cup \text{Int} g\Delta_0^* \). Let \(\Delta_1 = g\Delta_0^* \). \(M \) is the union of the interiors of the two \(n \)-elements \(\Delta_0 \) and \(\Delta_1 \); hence by the Mazur-Brown Theorem (Lemma 3), the complement of a point of \(M \) is polyhedrally equivalent to euclidean \(n \)-space. In particular \(M \) is topologically a sphere.

(b) Case. \(n = 2k, n \geq 8 \).

The proof is very similar; the same notation is used. In this case, however, \(\dim S(f) \leq 2 \); \(\dim Q_1 \leq 3 \). The Penrose-Whitehead-Zeeman Theorem applies to \(fQ_1 \) since \(\dim fQ_1 \leq 3 \), and \(\dim M \geq 8 \). The rest of the proof is word for word the same.

References