Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Knotting manifolds


Author: E. C. Zeeman
Journal: Bull. Amer. Math. Soc. 67 (1961), 117-119
DOI: https://doi.org/10.1090/S0002-9904-1961-10529-6
MathSciNet review: 0123335
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. J. W. Alexander, The combinatorial theory of complexes, Ann. of Math. vol. 31 (1930) pp. 292-320. MR 1502943
  • 2. E. Artin, Zur Isotopie zweidimensionalen Flächen im R, Abh. Math. Sem. Univ. Hamburg vol. 4 (1926) pp. 174-177.
  • 3. M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. vol. 66 (1960) pp. 74-76. MR 117695
  • 4. M. C. Irwin, A generalisation of Dehn's Lemma, to appear.
  • 5. B. Mazur, On embeddings of spheres, Bull. Amer. Math. Soc. vol. 65 (1959) pp. 59-65. MR 117693
  • 6. B. Mazur, The definition of equivalence of combinatorial imbeddings, Inst. Hautes Études Sci. Publ. Math. vol. 3 (1959) pp. 5-17. MR 116346
  • 7. R. Penrose, J. H. C. Whitehead and E. C. Zeeman, Imbedding of manifolds in Euclidean space, Ann. of Math., to appear. MR 124909
  • 8. J. R. Stallings, Polyhedral homotopy-spheres, Bull. Amer. Math. Soc., to appear. MR 124905
  • 9. E. C. Zeeman, Unknotting spheres, Ann. of Math. vol. 72 (1960) pp. 350-361. MR 117738


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1961-10529-6

American Mathematical Society