If $G = \{a, b, \cdots\}$ is a locally compact abelian group and $X = \{x, y, \cdots\}$ a complex commutative Banach algebra, we denote by $B(G, X)$ the generalized group algebra in the sense of [1; 2]. An X-valued function g defined over G is in $B(G, X)$ if g is strongly measurable and Bochner integrable with respect to Haar measure over G. We define $\|g\|_{B(G, X)} = \int_{G} |g(a)| x \, da$ and, with convolution as multiplication, $B(G, X)$ is a complex commutative \mathbb{C}-algebra. In [1, p. 1606], it is shown that the space $\mathfrak{M}(B)$ of regular maximal ideals in $B(G, X)$ is homeomorphic with $\hat{G} \times \mathfrak{M}(X)$. Here, $\hat{G} = \{\hat{a}, \hat{b}, \cdots\}$ is the character group of G and $\mathfrak{M}(X)$ denotes the space of regular maximal ideals in X, both in their usual topologies. If ϕ_M is the canonical homomorphism of X onto the complex numbers associated with an $M \in \mathfrak{M}(X)$, then a function $g \in B(G, X)$ is represented on its space of maximal ideals $\mathfrak{M}(X)$ as $g_\phi = \phi_M g$ where $f \in L(G)$ and ϕ is a function defined on $\mathfrak{M}(X)$, then $g = fx$ for some $x \in X$. Clearly $fx \in B(G, X)$. Further, finite linear combinations of functions of the type fx with $f \in L(G), x \in X$ are dense in $B(G, X)$.

In this paper we propose to characterize the homomorphisms T from $B(G, X)$ into $B(G, X')$ which are such that T keeps $L(G)$ “pointwise invariant.” More precise statements will be found in the theorems below.

We begin with

Theorem 1. Let G be a group such that \hat{G} is connected and let X and X' be commutative \mathbb{C}-algebras with identities e, e' respectively. Suppose $\mathfrak{M}(X)$ is totally disconnected and X' is semi-simple. Let $T: B(G, X) \to B(G, X')$ be a continuous homomorphism such that $T(f e) = f e'$ for any $f \in L(G)$. Then there exists a continuous homomorphism $\sigma: X \to X'$ such that $(Tg)(a) = \sigma g(a)$ for any $g \in B(G, X)$.

Proof. If $g' \in B(G, X')$ and g' is represented on its space of maximal ideals $\hat{G} \times \mathfrak{M}(X')$ as $j \cdot \phi'$ where $f \in L(G)$ and ϕ' is a function defined on $\mathfrak{M}(X')$, then $g' = fx'$ for some $x' \in X'$. (Here, $\int_{\hat{G}} f(\hat{a})(a, \hat{a}) \, da.$) For, consider the function F from G to X' given

\[F(a) = \int_{\hat{G}} f(\hat{a})(a, \hat{a}) \, da. \]
A HOMOMORPHISM IN GENERALIZED GROUP ALGEBRAS

by \(F(a) = \int a g'(a)(a, \alpha) da \). If \(M' \in \mathfrak{M}(X') \), then \(\phi_{M'}(F(\alpha)) = \int \phi(M') \).

If \(f \neq 0 \), there exists an \(\alpha \) such that \(\int \phi(M') \neq 0 \). Let \(\alpha' = F(\alpha) / \int \phi(M') \) so that \(\phi_{M'}(x') = \phi'(M') \). We see that \(g' \) and \(f x' \) are represented by the same function on \(\hat{G} \times \mathfrak{M}(X') \). Now, since \(X' \) is semi-simple, \(B(G, X') \) is semi-simple [1, p. 1609] and thus \(g' = f x' \).

For \(\alpha \in \hat{G} \), \(M' \in \mathfrak{M}(X') \), we have in

\[
[T_{g'}(\alpha, M')] = \int a \phi_{M'}(T_{g'})(a)(a, \alpha) da
\]
a continuous multiplicative linear functional on \(B(G, X) \). This means that \([T_{g'}]^{-1}(\alpha, M') \) is equal to \(\tau(\alpha) \), \(\sigma^*M' \) for some \(\tau(\alpha) \in \hat{G} \), \(\sigma^*M' \in \mathfrak{M}(X) \). Thus, \(T^*: \hat{G} \times \mathfrak{M}(X') \to \hat{G} \times \mathfrak{M}(X) \) given by \(T^*(\alpha, M') = (\tau(\alpha), \sigma^*M') \). Since \(\hat{G} \) is connected and \(T^* \) is continuous, \(T^*(\hat{G} \times \{ M' \}) \) is a connected set in \(\hat{G} \times \mathfrak{M}(X) \) for each \(M' \in \mathfrak{M}(X') \). Since \(\mathfrak{M}(X) \) is totally disconnected, \(T^*(\hat{G} \times \{ M' \}) = \hat{G} \times \{ \sigma^*M' \} \). This is true because the connected components of \(\hat{G} \times \mathfrak{M}(X) \) are precisely of the form \(\hat{G} \times \{ M \} \) with \(M \in \mathfrak{M}(X) \). Since \(T(fe) = fe', f \in L(G) \), we conclude that \(\tau(\alpha) = \alpha \) and \(T^* \) is the product of the identity map on \(\hat{G} \) and a map \(\sigma^*: \mathfrak{M}(X') \to \mathfrak{M}(X) \).

Consider \(f x \in B(G, X), f \in L(G) \). It gets represented as a product function on \(\hat{G} \times \mathfrak{M}(X) \). From the nature of \(T^* \) in the preceding paragraph, \(T(f x) \) gets represented as a product function on \(\hat{G} \times \mathfrak{M}(X') \) whose first factor is \(f(\alpha) \). In view of the second paragraph of this proof, there exists \(\sigma(x) \in X' \) such that \(T(f x) = \sigma(x)f \). The map \(\sigma: X \to X' \) is a continuous homomorphism as is easy to verify. As already remarked, finite linear combinations of functions \(f x \) are dense in \(B(G, X) \) and since \(T \) is continuous, the theorem is proved.

In our next theorem \(G \) will be taken compact and we require the following

Lemma. Suppose \(G \) is a compact abelian group with Haar measure normalized to 1, and \(X \) is a complex commutative \(B \)-algebra with identity \(e \) with no restrictions on \(\mathfrak{M}(X) \). Let \(\phi \) be a continuous homomorphism from \(B(G, X) \) to \(L(G) \) which is such that \(\phi(fe) = f \) for all \(f \in L(G) \). Then there exists an \(M \in \mathfrak{M}(X) \) such that \((\phi g)(a) = \phi_M g(a) \) a.e. for any \(g \in B(G, X) \).

Proof. Since \(G \) is compact, the constant \(X \)-valued functions are in \(B(G, X) \) and thus \(X \) can be considered to be a subset of \(B(G, X) \). In other words, if \(x \in X \), we denote the function \(f(a) = x \) (for almost all \(a \in G \)) simply by \(x \) itself. If \(x, y \in X \subset B(G, X) \), then \(x * y = \int xy a = xy \) since \(m(G) = 1 \). (Here, \(xy \) denotes the ordinary product of \(x \) and \(y \) in the \(B \)-algebra \(X \).) Now \(\phi \) is not identically zero on \(X \) because
\(\phi(1 \cdot e) = 1 \). Further, for any \(x \in X \), \(\phi(x \cdot e) = \phi(xe) = \phi(x) = \phi(x) \cdot \phi(e) = \phi(x) \cdot 1 f. \phi(x) da = \text{a constant a.e. over } G \). Hence each \(x \in X \) is mapped by \(\phi \) onto a constant function in \(L(G) \). \(\phi \) is additive on \(X \) and furthermore: \(\phi(x \cdot y) = \phi(xy) = \phi(x) \cdot \phi(y) = \phi(x) \phi(y) \) for any \(x, y \in X \). Consequently \(\phi \) is a continuous nonzero multiplicative linear functional on the \(B \)-algebra \(X \) and, as such, there exists an \(M \subseteq \mathcal{M}(X) \) with \(\phi(x) = \phi_M(x) \) for \(x \in X \).

Choose an arbitrary \(f \in L(G) \), \(x \in X \) and \(\delta \in \mathcal{G} \). We have:
\[
\phi(f(x \cdot (\cdot, \delta)^{-1}e)) = f(\delta)\phi((\cdot, \delta)^{-1}x) = f(\delta)\phi((\cdot, \delta)^{-1}x) = \phi(fx) \cdot \phi((\cdot, \delta)^{-1}e) = \phi(fx) \cdot (\cdot, \delta)^{-1} = (\cdot, \delta)^{-1}[\phi(fx)](\delta). \]
Hence, for each \(\delta \in \mathcal{G} \),
\[
[\phi(fx)](\delta) = (a, \delta)f(\delta)\phi((a, \delta)^{-1}x) = (a, \delta)(a, \delta)^{-1}f(\delta)\phi(x) = f(\delta)\phi_M(x). \]
This implies \(\phi(fx) = \phi_M(x)f \) for all \(f \in L(G) \), \(x \in X \).

Taking finite linear combinations of functions of the type \(fx \) with \(f \in L(G) \) and \(x \in X \), we can find a sequence \(\{f_n\} \) such that \(f_n \rightarrow g \) for any \(g \in B(G, X) \) with \(\phi(f_n) = \phi_M(f_n) \). Hence \(\phi(g) = \phi_M(g) \) since \(\phi \) is continuous and the lemma is established.

Theorem 2. Let \(G \) and \(X \) be as in the lemma and let \(X' \) denote a semi-simple \(B \)-algebra with identity \(e' \). Suppose \(T : B(G, X) \rightarrow B(G, X') \) is a continuous homomorphism such that \(T(fe) = fe' \) for any \(f \in L(G) \). Then there exists a continuous homomorphism \(\sigma : X \rightarrow X' \) such that \((Tg)(\sigma) = \sigma g(\sigma) \) for any \(g \in B(G, X) \).

Proof. Let \(\{W\} \) be the set of neighborhoods of the identity \(0 \in G \) and let \(\{j_w\} \) be an approximate identity in \(L(G) \). Then, if \(f \in L(G) \), \(x \in X \), we have \(T(j_w \cdot fx) = T(j_w \cdot fx) \cdot fe' \rightarrow T(fx) \) as \(W \rightarrow 0 \). Taking Fourier transforms we find
\[
[T(j_w \cdot fx)](\delta) \rightarrow [T(fx)](\delta) \quad \text{so that} \quad [T(j_w \cdot fx)](\delta) \text{ converges as } W \rightarrow 0 \text{ for each } \delta \in \mathcal{G}. \]
Call this limit \(\sigma_d(x) \). It is clear that \(\sigma_d(x) \) is independent of \(\delta \) and the function \(\sigma \) defining it.

Let \(M' \subseteq \mathcal{M}(X') \) and consider the map \(\phi_{M'} \circ T \) from \(B(G, X') \) to \(L(G) \). If \(fe \in B(G, X) \) with \(f \in L(G) \), then \((\phi_{M'} \circ T)(fe) = \phi_{M'}(fe') = f \). The map \(\phi_{M'} \circ T \) is continuous and the lemma applies to it. Therefore, there is an \(M \subseteq \mathcal{M}(X) \), depending on \(M' \subseteq \mathcal{M}(X') \), such that \(\phi_{M'} \circ T = \phi_M \). Now:
\[
\phi_{M'}[T(fx)](\delta) = [\phi_{M'} \circ T](fx)](\delta) = f(\delta)\phi_M(x) = f(\delta)\phi_{M'}(\sigma_d(x)). \]
This means \(\phi_{M'}(\sigma_d(x)) = \phi_M(x) \) for each \(M' \subseteq \mathcal{M}(X') \) and each \(\delta \in \mathcal{G} \), \(x \in X \).

We show that \(\sigma_d(x) \) is actually independent of \(\delta \). Suppose \(\sigma_{d_1}(x) = y_1 \), \(\sigma_{d_2}(x) = y_2 \) and \(d_1 \neq d_2 \). For any \(M' \subseteq \mathcal{M}(X') \) we have \(\phi_{M'}(y_1) = \phi_{M'}(y_2) = \phi_M(x) \). Since \(X' \) is semi-simple, we must have \(y_1 = y_2 \) and
so \(\sigma_\delta(x) \) is independent of \(\delta \). Write \(\sigma_\delta(x) = \sigma(x) \). \(\sigma \) is a continuous homomorphism from \(X \) to \(X' \). We have, consequently, shown that
\[
[T(fx)](\delta) = \sigma(x)f(\delta)
\]
d and this means \(T(fx) = \sigma(x)f \) for all \(f \in L(G) \), \(x \in X \), because \(B(G, X') \) is semi-simple if \(X' \) is semi-simple. Continuing in a manner like that at the end of the lemma or the end of Theorem 1, we find that \((Tg)(a) = \sigma g(a) \) for all \(g \in B(G, X) \). This completes the proof.

We remark that, conversely, if \(\sigma: X \to X' \) is a continuous homomorphism, then the map \((Tg)(a) = \sigma g(a) \) from \(B(G, X) \) to \(B(G, X') \) is a continuous homomorphism with no restrictions on \(G, \hat{G}, X \) or \(X' \). The proof is easy and is omitted.

Theorem 3. In either Theorem 1 or 2, if \(T \) is an isomorphism from \(B(G, X) \) onto \(B(G, X') \), then \(\sigma \) is an isomorphism from \(X \) onto \(X' \).

Proof. \(\sigma \) is one-one for if \(x_1 \neq x_2, x_1, x_2 \in X \), then \(fx_1 \neq fx_2 \) where \(f \in L(G), f \neq 0 \). Since \(T \) is one-one, \(T(fx_1) = \sigma(x_1)f \neq T(fx_2) = \sigma(x_2)f \) so that \(\sigma(x_1) \neq \sigma(x_2) \). \(\sigma \) is onto \(X' \), for choose any \(x' \in X' \). Find an \(f \in L(G) \) such that \(f'(\hat{0}) \neq 0 \). Since \(T \) is onto, there is a \(g \in B(G, X) \) such that \(\sigma g = fx' \). Taking Fourier transforms:
\[
[\sigma g](\delta) = \sigma g(\delta) = \hat{f}(\delta)x'.
\]
Setting \(\delta = \hat{0} \), we find \(\sigma g(\hat{0}) = \hat{f}(\hat{0})x' \) so that \(\sigma(\hat{g}(\hat{0})/\hat{f}(\hat{0})) = x' \). Hence, there is an \(x = \hat{g}(\hat{0})/\hat{f}(\hat{0}) \in X \) such that \(\sigma(x) = x' \).

References

The City College of New York