Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Fixed points of multiple-valued transformations


Author: F. B. Fuller
Journal: Bull. Amer. Math. Soc. 67 (1961), 165-169
DOI: https://doi.org/10.1090/S0002-9904-1961-10546-6
MathSciNet review: 0123307
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. S. Eilenberg and D. Montgomery, Fixed point theorems for multi-valued transformations, Amer. J. Math. vol. 68 (1946) pp. 214-222. MR 16676
  • 2. F. B. Fuller, Note on trajectories in a solid torus, Ann. of Math. vol. 56 (1952) pp. 438-439. MR 51990
  • 3. F. B. Fuller, The homotopy theory of coincidences, Ann. of Math. vol. 59 (1954) pp. 219-226. MR 60229
  • 4. O. H. Hamilton, Fixed points for certain noncontinuous transformations, Proc. Amer. Math. Soc. vol. 8 (1957) pp. 750-756. MR 87095
  • 5. O. H. Hamilton, A theorem of Hamilton: correction, Duke Math. J. vol. 24 (1957) p. 59. MR 83731
  • 6. R. D. Johnson, Jr., An antipodal point theorem for mapping the 2-sphere into the reals, Bull. Amer. Math. Soc. vol. 60 (1954) p. 36, abstract.
  • 7. S. Kakutani, A generalization of Brouwer's fixed point theorem, Duke Math. J. vol. 8 (1941) pp. 457-459. MR 4776
  • 8. S. Lefschetz, Algebraic topology, New York, Amer. Math. Soc. Colloquium publications vol. 27, 1942, pp. 191-196, 318-326. MR 7093
  • 9. S. Lefschetz, On coincidences of transformations, Bol. Soc. Mat. Mexicana vol. 2 (1957) pp. 16-25. MR 94808
  • 10. B. O'Neill, A fixed point theorem for multi-valued functions, Duke Math. J. vol. 24 (1957) pp. 61-62. MR 83729
  • 11. B. O'Neill, Induced homology homomorphisms for set-valued maps, Pacific J. Math. vol. 7 (1957) pp. 1179-1184. MR 104226
  • 12. R. L. Plunkett, A fixed point theorem for continuous multi-valued transformations, Proc. Amer. Math. Soc. vol. 7 (1956) pp. 160-163. MR 87094
  • 13. R. H. Rosen, Fixed points for multi-valued functions on snake-like continua, Proc. Amer. Math. Soc. vol. 10 (1959) pp. 167-173. MR 105071
  • 14. L. M. Sonneborn, Level sets on spheres, Thesis, California Institute of Technology, 1956.
  • 15. R. H. Sorgenfrey, Dimension lowering mappings of convex sets, Proc. Amer. Math. Soc. vol. 5 (1954) pp. 179-181. MR 60810
  • 16. A. D. Wallace, A fixed point theorem for trees, Bull. Amer. Math. Soc. vol. 47 (1941) pp. 757-760. MR 4758
  • 17. L. E. Ward, Jr., A fixed point theorem for multi-valued functions, Pacific J. Math. vol. 8 (1958) pp. 921-927. MR 103446


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1961-10546-6

American Mathematical Society