THE MANIFOLD SMOOTHING PROBLEM

BY STEWART S. CAIRNS

Communicated by A. M. Gleason, January 11, 1961

The Schoenflies Theorem in n dimensions has been proved by both Marston Morse [4] and Morton Brown [1] subject to the shell hypothesis [4]. Morse's proof leads to C^m-diffeomorphisms. We now prove the following Schoenflies Theorem for polyhedra without the shell hypothesis.

Theorem 1. Let P^{n-1} be a combinatorial $(n-1)$-sphere in a euclidean n-space E^n, and let N be an arbitrary neighborhood of P^{n-1}. Then E^n can be mapped onto itself by a homeomorphism h which is a C^∞-diffeomorphism on $E^n - N$ and which maps P^{n-1} onto a euclidean $(n-1)$-sphere S^{n-1}.

The proof commences with a modification of a procedure due to H. Noguchi [5] yielding an ε-isotopy of E^n carrying P^{n-1}, on D^n, into a polyhedron Q^{n-1}, admitting a transverse vector field. A neighborhood of Q^{n-1} is fibred by C^0-$(n-1)$-spheres, which permits a completion of the proof with the aid of Morse's methods [4]. His exceptional interior point can be relegated to N. The proof is inductive, requiring a partial assumption of Theorem 1 in the next lower dimension.

Corollary. Given a $\delta > 0$, E^n admits a δ-isotopy h_t $(0 \leq t \leq 1)$ such that (1) h_t is the identity on the unbounded component of $E^n - N$, (2) $h_t(P^{n-1}) \subset D^n$ $(t > 0)$ and (3) $h_t(P^{n-1})$ is a C^∞-$(n-1)$-sphere $(t > \delta)$.

We will call a combinatorial n-manifold smoothable or nonsmoothable according as it is or is not compatible with a differentiable structure. The known nonsmoothable manifolds include a K^8 due to Milnor [3] and a K^{10} due to Kervaire [2]. The latter is strongly nonsmoothable, in the sense that the topological manifold it covers, $M^{10} = |K^{10}|$, can not carry a differentiable structure, either compatible or incompatible with K^{10}.

A piecewise differentiable imbedding of a K^n in a differentiable n-manifold M^n means a homeomorphism $h: K^n \to M^n$, where h is differentiable of maximal rank on each closed simplex of K^n.

1 This work was supported by National Science Foundation Grant No. GI4431.
THEOREM 2. A combinatorial n-manifold K^n without boundary is smoothable if and only if K^n admits a piecewise differentiable imbedding h into a differentiable M^{n+1}.

The necessity of the condition is easy to prove. The sufficiency proof commences with an $h: K^n \rightarrow M^{n+1}$ restricted, as in the proof of Theorem 1, so that $h(K^n)$ admits a transverse vector field on M^{n+1}. Let M^{n+1} be represented as a differentiable submanifold of an E^{n+r}. With the aid of a potential function, equipotential $(n+r-1)$-manifolds surrounding $h(K^n)$ in E^{n+r} can be defined [6]. If $h(K^n)$ is two-sided in M^{n+1}, the intersection $V^{n+r-1} \cap M^{n+1}$ with M^{n+1} of an equipotential sufficiently near $h(K^n)$ falls into two components, V_1^n and V_2^n, each of which is differentiable and homeomorphic to K^n. If $h(K^n)$ is one-sided in M^{n+1}, points can be so identified in pairs on $V^{n+r-1} \cap M^{n+1}$ as to obtain a differentiable homeomorph of $h(K^n)$.

COROLLARY. The K^8 of Milnor and K^{10} of Kervaire do not admit piecewise differentiable imbeddings in differentiable 9-manifolds and 11-manifolds respectively.

THEOREM 3. If there exists a nonsmoothable K^m without boundary, then there is a nonsmoothable K^n without boundary for each $n > m$.

In particular, $K^m \times S^1$ where S^1 is a circle, is nonsmoothable, for its smoothability would imply that of K^m, by Theorem 2. Thus, all the manifolds $K^8 \times S^1 \times \cdots \times S^1$ and $K^{10} \times S^1 \times \cdots \times S^1$ are nonsmoothable, for Milnor's K^8 and Kervaire's K^{10}.

The invariants used by Milnor and Kervaire are thus freed from the dimensions for which they were defined. They are imbeddability as well as smoothability criteria.

REFERENCES

University of Illinois