In this note we will be concerned with the proof and consequences of the following fact: if \(\phi_0 \) is a differentiable action of a compact Lie group on a compact differentiable manifold \(M \), then any differentiable action of \(G \) on \(M \) sufficiently close to \(\phi_0 \) in the \(C^1 \)-topology is equivalent to \(\phi_0 \).

1. Notation. In what follows differentiable means class \(C^\infty \). If \(M \) and \(V \) are differentiable manifolds, \(\mathfrak{M}(M, V) \) is the space of differentiable maps of \(M \) into \(V \) in the \(C^K \)-topology where \(K \) is a positive integer or \(\infty \) fixed throughout. We denote by \(\text{Diff}(M) \) the group of automorphisms of \(M \) topologized as a subspace of \(\mathfrak{M}(M, M) \). As such it is a topological group. \(\mathfrak{D}(M) \) is the subgroup of \(\text{Diff}(M) \) consisting of diffeomorphisms which are the identity outside of some compact set and \(\mathfrak{D}_0(M) \) is the arc component of \(i_M \), the identity map of \(M \), in \(\mathfrak{D}(M) \). If \(M \) is compact \(\mathfrak{D}(M) \) is locally arcwise connected and \(\mathfrak{D}_0(M) \) is open in \(\mathfrak{D}(M) \) and in fact in \(\mathfrak{M}(M, M) \). For a definition of the \(C^K \)-topology and a proof of the statements made above, see [6]. If \(G \) is a Lie group we denote by \(\mathfrak{G}(G, M) \) the space of differentiable actions of \(G \) on \(M \), i.e. continuous homomorphisms of \(G \) into \(\text{Diff}(M) \), topologized with the compact-open topology. If \(\phi: g \mapsto g^* \) is an element of \(\mathfrak{G}(G, M) \) then by a theorem of D. Montgomery [2] \(\phi: (g, m) \mapsto g^*m \) is an element of \(\mathfrak{M}(G \times M, M) \). Given \(\phi \in \mathfrak{G}(G, M) \) and \(f \in \text{Diff}(M) \) then \(\phi \) composed with the inner automorphism of \(\text{Diff}(M) \) defined by \(f \) is another element \(f\phi \) of \(\mathfrak{G}(G, M) \)(\(g^* = fg^*f^{-1} \)). Clearly \((f, \phi) \mapsto f\phi \) is jointly continuous\(^2\) and defines an action of \(\text{Diff}(M) \) on \(\mathfrak{G}(G, M) \). We henceforth consider \(\mathfrak{G}(G, M) \) as a \(\text{Diff}(M) \)-space and, \textit{a fortiori} as a \(\mathfrak{D}(M) \) and \(\mathfrak{D}_0(M) \)-space. Note that the orbit space \(\mathfrak{G}(G, M)/\text{Diff}(M) \) is just the set of equivalence classes of actions of \(G \) on \(M \).

2. Statement of main theorem and consequences. The following theorem will be proved in §3.

Theorem A. If \(M \) is a compact differentiable manifold and \(G \) is a compact Lie group then the \(\mathfrak{D}_0(M) \)-space \(\mathfrak{G}(G, M) \) admits local cross sections; i.e. given \(\phi_0 \in \mathfrak{G}(G, M) \) there is a neighborhood \(U \) of \(\phi_0 \) in...
NEARBY DIFFERENTIABLE ACTIONS

\[\alpha(G, M) \text{ and a continuous map } \chi: U \to \mathcal{D}_0(M) \text{ such that } \chi(\phi_0) = i_M \text{ and } \chi(\phi)\phi_0 = \phi. \]

Corollary 1. If \(\phi_1 \) is a continuous arc in \(\alpha(G, M) \) then there is a continuous arc \(f_1 \) in \(\mathcal{D}_0(M) \) such that \(f_0 = i_M \) and \(\phi_1 = f_1\phi_0. \)

Remarks. Corollary 1 was proved in [7] by the author and T. E. Stewart under the added hypothesis that \((g, m, t) \to \phi_t(g, m) \) was jointly differentiable in all three variables. It was shown there by counter-example that Corollary 1 is invalid if we consider continuous rather than differentiable actions or if we drop either of the conditions that \(G \) or \(M \) be compact. It follows that all these conditions are also necessary for the validity of Theorem A.

Using that \(\mathcal{D}_0(M) \) is locally arcwise connected:

Corollary 2. \(\alpha(G, M) \) is locally arcwise connected. If \(\phi_0 \in \alpha(G, M) \) then its orbit under \(\mathcal{D}_0(M) \) is its arc component in \(\alpha(G, M) \) hence an open set, and its orbit under \(\mathcal{D}(M) \) (i.e. the class of actions equivalent to \(\phi_0 \)) is also open and so a union of arc components. Moreover if \(\Delta = \{ f \in \mathcal{D}(M) | f\phi_0 = \phi_0 \} \) is the group of automorphisms of the differentiable \(G \)-space \((M, \phi_0) \) then \(f\Delta \to f\phi_0 \) is a homeomorphism of \(\mathcal{D}(M)/\Delta \) onto \(\mathcal{D}(M)/\phi_0. \)

Since \(\alpha(G, M) \) is separable metric and each equivalence class is open:

Corollary 3. There are at most countably many inequivalent differentiable actions of \(G \) on \(M. \)

Remarks. It seems likely that by modifying a construction of R. Bing [1] one could construct uncountably many continuous actions of \(Z_2 \) on \(S^3 \) with fixed point sets pairwise inequivalently embedded 2-spheres. These actions would of course all be inequivalent.

The following extension theorem generalizes Theorem A. On the other hand it is an easy consequence of Theorem A above and Theorem B of [6].

Theorem B. Let \(H \) be a Lie group, \(W \) a differentiable manifold (neither necessarily compact), \(G \) a compact subgroup of \(H \), and \(M \) a compact submanifold of \(W \). Let \(\psi_0 \in \alpha(H, W) \) such that \(M \) is invariant under \(\psi_0|G \) and let \(\phi_0 \in \alpha(G, M) \) be the induced action of \(G \) on \(M \). Then given any neighborhood \(\theta \) of \(M \) in \(W \) there exists a neighborhood \(U \) of \(\phi_0 \) in \(\alpha(G, M) \) and a map \(\psi: U \to \alpha(H, W) \) such that \(\psi(\phi_0) = \psi_0, \psi(\phi)|G \) leaves \(M \) invariant and induces \(\phi \) on \(M \), and \(\psi(\phi) \) agrees with \(\psi_0 \) outside \(\theta \). In fact there is a continuous map \(\chi: U \to \mathcal{D}_0(W) \) such that \(\chi(\phi) \) is the identity outside \(\theta \) and such that \(\psi(\phi) = \chi(\phi)\psi_0 \) satisfies the above conditions.
3. **Proof of Theorem A.** By a theorem proved independently by the author [5] and G. D. Mostow [4] there exists an orthogonal representation $g \mapsto g^\psi$ of G in a Euclidean vector space V and a differentiable ϕ_0-equivariant embedding $f_0: M \to V$. Let θ be a tubular neighborhood of $f_0(M)$ in V with respect to the Euclidean metric. Then θ is invariant under the representation ψ and the map $\pi: \theta \to f_0(M)$ carrying a point of θ into the unique nearest point of $f_0(M)$ is a differentiable equivariant retraction of θ onto $f_0(M)$. Given $\phi \in \mathcal{G}(G, M)$ define $f_\phi: M \to V$ by $f_\phi(m) = \int g^{-1} f_0(g^\phi m) \, dg$ where the integral is with respect to Haar measure on G. Then (cf. [4, p. 434]) f_ϕ is ϕ-equivariant and clearly $f_{\phi_0} = f_0$. The map $F_\phi \in \mathfrak{M}(G \times M, V)$ defined by $F_\phi(g, m) = \psi(g^{-1}, f_0 \circ \phi(g, m))$ is easily seen to depend continuously on $\phi \in \mathcal{G}(G, M)$ and since $f_\phi = \int F_\phi(g, m) \, dg$ it follows that $\phi \mapsto f_\phi$ is a continuous map of $\mathcal{G}(G, M)$ into $\mathfrak{M}(M, V)$. Then for ϕ in a neighborhood U of ϕ_0 in $\mathcal{G}(G, M)$ $f_\phi(M) \subseteq \Theta$ so $\sigma(\phi) = f_{\phi_0}^{-1} \circ \pi \circ f_\phi \in \mathfrak{M}(M, M)$. Now $\sigma: U \to \mathfrak{M}(M, M)$ is continuous and clearly $\sigma(\phi_0) = \text{id}_M$. Since $\mathfrak{D}(M)$ is open in $\mathfrak{M}(M, M)$, for some smaller neighborhood U of ϕ_0 in $\mathcal{G}(G, M)$ $\sigma: U \to \mathfrak{D}(M)$. Since f_ϕ, π, at f_{ϕ_0} are respectively ϕ, π, and ϕ_0-equivariant maps into (V, ψ) it follows that $\sigma(\phi)g^\psi = g^\psi \sigma(\phi)$ or putting $\chi(\phi) = \sigma(\phi)^{-1}$, $\chi(\phi)\phi_0 = \phi$. Q.E.D.

4. **Conjugacy of neighboring compact subgroups of $\text{Diff}(M)$.** It is suggested by Theorem A that an analogue of the Montgomery and Zippin conjugacy theorem for neighboring compact subgroups of a Lie group [3] might hold for $\text{Diff}(M)$, i.e. that given a compact subgroup G of $\text{Diff}(M)$ every compact subgroup of $\text{Diff}(M)$ sufficiently close to G is conjugate in $\text{Diff}(M)$ to a subgroup of G. This in fact is the case and was the basis of an earlier more complicated proof of Theorem A. A proof will appear elsewhere.

References

Brandeis University