Equivalence of nearby differentiable actions of a compact group

Author:
Richard S. Palais

Journal:
Bull. Amer. Math. Soc. **67** (1961), 362-364

DOI:
https://doi.org/10.1090/S0002-9904-1961-10617-4

MathSciNet review:
0130321

Full-text PDF

References | Additional Information

**1.**R. Bing,*A homeomorphism between the*3-*sphere and the sum of two solid horned spheres*, Ann. of Math. vol. 56 (1952) pp. 354-362. MR**49549****2.**D. Montgomery,*Topological groups of differentiable transformations*, Ann. of Math. vol. 46 (1945) pp. 382-387. MR**13162****3.**D. Montgomery and L. Zippin,*A theorem on Lie groups*, Bull. Amer. Math. Soc. vol. 48 (1942) pp. 448-452. MR**6545****4.**G. D. Mostow,*Equivariant embeddings in Euclidean space*, Ann. of Math. vol. 65 (1957) pp. 432-446. MR**87037****5.**R. S. Palais,*Imbedding of compact, differentiable, transformation groups in orthogonal representations*, J. Math. Mech. vol. 6 (1957) pp. 673-678. MR**92927****6.**R. S. Palais,*Local triviality of the restriction map for embeddings*, Comment. Math. Helv. vol. 34 (1960) pp. 305-312. MR**123338****7.**R. S. Palais and T. E. Stewart,*Deformations of compact differentiable transformation groups*, Amer. J. Math. vol. 82 (1960) pp. 935-937. MR**120652**

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1961-10617-4