Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Vector fields on spheres


Author: Hirosi Toda
Journal: Bull. Amer. Math. Soc. 67 (1961), 408-412
DOI: https://doi.org/10.1090/S0002-9904-1961-10646-0
MathSciNet review: 0131282
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. M. G. Barratt, Truck groups. I, Proc. London Math. Soc. vol. 5 (1955) pp. 71-106. MR 72477
  • 2. R. Bott, The stable homotopy of the classical groups, Ann. of Math. vol. 70 (1959) pp. 313-337. MR 110104
  • 3. I. M. James, The intrinsic join: a study of the homotopy groups of Stiefel manifolds, and Cross-sections of Stiefel manifolds, Proc. London Math. Soc. vol. 8 (1958) pp. 507-636 and pp. 536-547. MR 100839
  • 4. I. M. James, Whitehead products and vector fields on spheres, Proc. Cambridge Philos. Soc. vol. 53 (1957) pp. 817-820. MR 105108
  • 5. H. Toda, Composition methods in homotopy groups of spheres, to be published in Annals of Mathematics Studies, Princeton University. MR 143217
  • 6. G. W. Whitehead, A generalization of the Hopf invariant, Ann. of Math. vol. 51 (1950) pp. 192-237. MR 41435
  • 7. J. H. C. Whitehead, On the groups π(V)and sphere-bundles, Proc. London Math. Soc. vol. 48 (1944) pp. 243-291.


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1961-10646-0

American Mathematical Society