ON A PROBLEM OF P. A. SMITH

BY J. C. SU
Communicated by Deane Montgomery, March 31, 1961

1. Introduction. Throughout this note, \mathbb{Z}_2 denotes the group of integers mod 2 and cohomology means the Alexander-Wallace-Spanier cohomology with coefficients in \mathbb{Z}_2. By a cohomology projective n-space we mean a compact Hausdorff space Y whose cohomology ring $H^*(Y)$ is isomorphic to that of the real projective n-space. In [2], Smith proved that if \mathbb{Z}_2 acts effectively on the real projective n-space such that the fixed point set $F(\mathbb{Z}_2)$ is nonempty, then $F(\mathbb{Z}_2)$ has exactly two components A_1 and A_2, where A_i is a cohomology projective n_i-space $(i=1, 2)$ and $n_1+n_2=n-1$. Smith then asked whether the result is true if the real projective n-space is replaced by a cohomology projective n-space. The purpose of this note is to give a positive answer to the question.

We wish to point out that the inclusion of ring structure in the definition of a cohomology projective n-space is indispensable as we may see from the following example. Let Y be the one-point union of a 1-sphere S^1 and a 2-sphere S^2. Clearly $H^*(Y)$ as a group is the same as the cohomology group of a projective plane. Let T be a generator of \mathbb{Z}_2 and define the action of T on Y such that on S^1 it is the reflexion with respect to the diameter passing through the point of contact. Then the fixed point set consists of three isolated points.

2. A construction. The proof of Smith's theorem in [2] has used the fact that a projective n-space admits an n-sphere as its two-folded covering space. It is therefore quite natural to expect that a cohomology projective n-space Y admits a cohomology n-sphere as its two-folded covering space. In the following we give a construction of such a cohomology n-sphere which is very similar to the construction of a covering space of a pathwise connected, locally pathwise connected, and locally pathwise simply connected space, with the dual of $H^1(Y)$ playing the role of fundamental group.

Let Y be a connected compact Hausdorff space and let $\alpha \in H^1(Y)$ be a nonzero element. Let $f: Y^2 \to \mathbb{Z}_2$ be a 1-cocycle representing α; then there exists an open covering \mathcal{U} of Y such that

$$f(y_0, y_2) = f(y_0, y_1) + f(y_1, y_2) \quad \text{whenever} \quad y_0, y_1, y_2 \in V \in \mathcal{U}.$$
Fix a point \(b \in Y \). By a \(\mathcal{V} \)-chain with base point \(b \) we mean a finite sequence \((y_i)_{i=0}^n \) of points of \(Y \) such that \(y_0 = b \) and \(\{y_{i-1}, y_i\} \) is contained in some \(V \in \mathcal{V} \) for all \(i = 1, 2, \ldots, n \), the set of all \(\mathcal{V} \)-chains with base point \(b \) is denoted by \(\mathfrak{X} \). Two \(\mathcal{V} \)-chains \((y_i)_{i=0}^n \) and \((y'_i)_{i=0}^m \) are said to be equivalent if

\[
\begin{align*}
(i) \quad & y_n = y'_m, \\
(ii) \quad & \sum_{i=1}^{n} f(y_{i-1}, y_i) = \sum_{j=1}^{m} f(y'_{j-1}, y'_j).
\end{align*}
\]

The quotient set of \(\mathfrak{X} \) under this equivalence relation is denoted by \(X \) and the equivalence class of \((y_i)_{i=0}^n \) is denoted by \([y_i]_{i=0}^n \).

Now we topologize \(X \) as follows. Let \(x = [y_i]_{i=0}^n \in X \) and \(\mathcal{B}(y_n) \) be a base of neighborhood of \(y_n \) such that every \(B(y_n) \in \mathcal{G}(y_n) \) is contained in some \(V \in \mathcal{V} \). To each \(B(y_n) \in \mathcal{G}(y_n) \), we define

\[
\beta(x) = \left\{ [y_i']_{i=0}^m \mid y_m' \in B(y_n), \sum_{i=1}^{m} f(y_{i-1}, y_i) + f(y_n, y_m') + \sum_{j=1}^{m} f(y'_{j-1}, y'_j) = 0 \right\}.
\]

It is easily verified that \(X \) is made a Hausdorff space with

\[
\mathcal{G}(x) = \{ B^*(x) \mid B(y_n) \in \mathcal{G}(y_n) \}
\]

as a base of neighborhoods of \(x \).

Define a map \(\pi: X \rightarrow Y \) by \(\pi([y_i]_{i=0}^n) = y_n \), it is straightforward to verify that \(\pi \) is well-defined and is a local homeomorphism of \(X \) onto \(Y \).

Obviously, to each \(y \in Y \), \(\pi^{-1}(y) \) has at most two points. We now claim that it has exactly two points. To see this, it suffices to consider the case when \(y = b \). Since \([b]\) is one point of \(\pi^{-1}(b) \), all we have to do is to exhibit a \(\mathcal{V} \)-chain \((y_i)_{i=0}^n \) with \(y_0 = y_n = b \) and \(\sum_{i=1}^{n} f(y_{i-1}, y_i) = 1 \). Suppose such a chain does not exist, then we can define a 0-cochain \(g: Y \rightarrow \mathbb{Z}_2 \) by \(g(y) = \sum_{i=1}^{n} f(y_{i-1}, y_i) \), where \((y_i)_{i=0}^n \) is any \(\mathcal{V} \)-chain with base point \(b \) with \(y_n = y \). Such a chain exists in view of the connectedness of \(Y \) and \(g \) is clearly well-defined. Now if \(\{y, y'\} \in V \in \mathcal{V} \), we have

\[
g(y') - g(y) = \sum_{i=1}^{n} f(y_{i-1}, y_i) + f(y, y') - \sum_{i=1}^{n} f(y_{i-1}, y_i) = f(y, y').
\]

But this means \(f - \delta g \) has empty support, contradicting the assumption that \(\alpha \neq 0 \).

Now let \(T \) be the generator of \(\mathbb{Z}_2 \) and define the action of \(T \) by exchanging the two points in \(\pi^{-1}(y) \) for each \(y \in Y \). We clearly obtain
a free action of \(Z_2 \) on the compact Hausdorff space \(X \) with \(Y = X/Z_2 \).

Define a 0-cochain \(h: X \to Z_2 \) by

\[
h([y], y_0) = \sum_{i=1}^{n} f(y_{i-1}, y_i).
\]

A similar argument as above shows that \(\pi^*(\alpha) \) is the cohomology class of \(\delta h \).

Suppose that now \(Y \) is a cohomology projective \(n \)-space and that \(\alpha \) is the generator of the cohomology ring \(H^*(Y) \). We claim that \(X \) is a cohomology \(n \)-sphere. As seen in [1], we have the exact Smith-Gysin sequence

\[
\cdots \to H^k(Y) \xrightarrow{\pi^*} H^k(X) \xrightarrow{\tau^*} H^{k+1}(Y) \to \cdots.
\]

Since \(\pi^*(\alpha) = 0 \) and \(\pi^* \) is a ring homomorphism, it follows that \(\pi^*: H^k(Y) \to H^k(X) \) is trivial for all \(k > 0 \). This is enough to conclude that

\[
H^k(X) = \begin{cases} Z_2, & k = 0, n, \\ 0, & \text{otherwise.} \end{cases}
\]

3. **Main theorem.**

Theorem. If \(Z_2 \) acts effectively on a cohomology projective \(n \)-space \(Y \) such that the fixed point set \(F(Z_2) \) is nonempty, then \(F(Z_2) \) has exactly two components \(A_1 \) and \(A_2 \) where each \(A_i \) is a cohomology projective \(n \)-space \((i = 1, 2)\) and \(n_1 + n_2 = n - 1 \).

Proof. Let \(S \) be the generator of \(Z_2 \). In the construction of \(X \) given in the last section, we may choose the base point \(b \) in \(F(Z_2) \) and we may assume that \(\mathcal{U} \) is \(S \)-invariant (i.e. \(\mathcal{U}(V) \subseteq \mathcal{U} \) for all \(V \subseteq \mathcal{U} \)). It follows that \(S \) maps \(\mathcal{U} \)-chains with base point \(b \) into themselves or \(S \) induces a transformation on \(\mathcal{X} \). Observe that \(S \) also induces an automorphism \(S^* \) on \(H^1(Y) \); hence we must have \(S^*(\alpha) = \alpha \). It is easily seen that this fact implies that \(S \) maps equivalent \(\mathcal{U} \)-chains into themselves, in other words \(S \) induces a transformation \(\hat{S} \) on the space \(X \) which is clearly compatible with \(\pi \) (i.e. \(\pi \circ \hat{S} = S \circ \pi \)). This means we have an action of the group \(Z_2 \times Z_2 \) on a cohomology \(n \)-sphere \(X \). The rest of the proof is word by word the same as given in [2].

References

University of Pennsylvania