DERIVATIONS AND GENERATIONS OF FINITE EXTENSIONS

BY CARL FAITH

Communicated by Nathan Jacobson, May 8, 1961

Let \(k \) be a given ground field, let \(\mathcal{F} \) denote the class of finite (= finitely generated) field extensions of \(k \) of tr.d. (= transcendence degree) \(\leq r \), and let \(n \) be the function defined on \(\mathcal{F} = \bigcup_0^\infty \mathcal{F}_r \) by: for any \(L \in \mathcal{F} \), \(n(L) = \) the minimal number of generators of \(L/k \). Classically it is known for suitable \(k \) that there exist purely transcendental extensions \(L/k \) having tr.d. 2, and containing impure subextensions of tr.d. 2, a fact which shows that in general \(n \) is not monotone in \(\mathcal{F} \) for all \(k \). The main result of this note establishes that these "counterexamples to Lüroth's theorem" constitute the only barriers to the monotonicity of \(n \) (see Theorem 2 for a precise statement). In particular it is demonstrated that \(n \) is montone on \(\mathcal{F}_1 \) for arbitrary \(k \), a result which appears new even when restricted to the subclass \(\mathcal{F}_0 \) of finite algebraic extensions of \(k \).

A result of independent (and possibly more general) interest, which is proved below, and which is essential to our proof of the statements above, is that \(\text{dim} \ \mathcal{D} \) is monotone on \(\mathcal{F} \), where for any \(L \in \mathcal{F} \), \(\mathcal{D}(L) \) is the vector space over \(L \) of \(k \)-derivations of \(L \). The connection between \(n \) and \(\text{dim} \ \mathcal{D} \) is given in the lemma.

Lemma. Let \(L/k \) be a finite extension of tr.d. \(r \), let \(s = \text{dim} \ \mathcal{D}(L) \), and let \(n = n(L) \). Then \(s \leq n \leq s+1 \); if \(s > r \), then \(n = s \).

Proof. It is known (e.g. [3, Theorem 41, p. 127]) that \(s \) is the smallest natural number\(^3\) such that there exist elements \(u_1, \ldots, u_s \in L \) such that \(L \) is separably algebraic over the field \(U = k(u_1, \ldots, u_s) \). Then \(L = U(a) \) for some \(a \in L \), so that \(s \leq n \leq s+1 \).

If \(s > r \), there exists \(u_q \) in the set \(S = \{ u_1, \ldots, u_s \} \) such that \(u_q \) is algebraically dependent over \(k \) on the complement of \(u_q \) in \(S \). For convenience renumber so that \(u_s \) is algebraic\(^4\) over the field \(T = k(u_1, \ldots, u_{s-1}) \). A short argument shows that \(L = U(a) \) for some

\(^1\) National Science Foundation Postdoctoral Fellow in the Institute for Advanced Study, on leave from Pennsylvania State University.

\(^2\) Expressed in the other words: If \(L/k \) is not separably generated, then \(n(L) = \text{dim} \ \mathcal{D}(L) \).

\(^3\) Strictly speaking the notation should allow for the case \(s = 0 \). By agreement then \(U = k \).

\(^4\) In case \(s = 1 \) set \(T = k \).

550
a ∈ L which is separably algebraic over \(T \). Thus \(L = T(u_\ast, a) \) is generated over \(T \) by two elements one of which is separable over \(T \). Then, by a classic result in field theory (cf. [2, §43, p. 138]), \(L = T(u_\ast') \) for suitable \(u_\ast' \in L \). Clearly then \(n = s \). Q.E.D.

If \(L/k \) is a finite extension, and \(L'/k \) a subextension, in general not every derivation of \(\mathcal{D}(L') \) can be extended to a derivation in \(\mathcal{D}(L) \). Nevertheless, the theorem below shows that \(\dim \mathcal{D} \) is a monotone function.

Theorem 1. Let \(L/k \) be a finite field extension, and let \(L'/k \) be any subextension. Then \(s = \dim \mathcal{D}(L) \geq s' = \dim \mathcal{D}(L') \).

Proof. Let \(r = \text{tr.d. } L/k \) and \(r' = \text{tr.d. } L'/k \). It is easy to see that it suffices to consider only the case \(r = r' \). For if \(r' < r \), then there exists a field extension \(L'' \) contained in \(L \) which is purely transcendental over \(L' \) and such that \(\text{tr.d. } L''/k = r \). Since \(L''/L' \) is a pure extension, every \(D' \in \mathcal{D}(L') \) is extendable to a derivation \(D'' \) in \(\mathcal{D}(L'') \).

It is an easy exercise to show that if \(D_1, \ldots, D'_t \) are linearly independent over \(L' \), then \(D_1', \ldots, D'_t \) are linearly independent over \(L'' \), so that \(\dim \mathcal{D}(L') \geq s' \). Hence it remains only to show that \(s \geq s' \) when \(r = r' \). An argument similar to the one just completed shows that \(s \geq s' \) when \(L/L' \) is separable. The proof now proceeds by induction on the algebraic degree \(|L:L'| \) of the extension \(L/L' \). One can therefore assume the theorem for all extensions \(L'' \) of \(k \) which contain \(L' \) and such that \(|L'' : L'| < |L : L'| \). Then clearly one can suppose that \(L' \) is a maximal proper subfield of \(L \). Since the separable case already has been decided, assume that \(k \) has characteristic \(p > 0 \), and that \(L/L' \) is inseparable. Then the maximality of \(L' \) shows that \(k(L^p) \subseteq L' \). By [1, p. 218] or [3, Theorem 41, p. 127], one has

\[
p^* = |L:k(L^p)|, \quad \text{and} \quad p'^* = |L':k(L'^p)|,
\]

so that the inclusions

\[
L \supset L' \supset k(L^p) \supset k(L'^p)
\]

together with the inequality

\[
|L:L'| \geq |k(L^p):k(L'^p) |
\]

yield the desired inequality \(p^* \geq p'^* \), that is, \(s \geq s' \). Q.E.D.

Corollary. Let \(L/k \) be a finite extension, and let \(L'/k \) be any subextension. Then, if either \(L/k \) or \(L'/k \) is not separably generated, then \(n(L) \geq n(L') \).
PROOF. Let $s = \dim \mathfrak{D}(L)$, $r = \text{tr.d. } L/k$, $n = n(L)$, and let s', r', and n' be the corresponding integers for L'/k. If L'/k is not separably generated, neither is L/k, so that we can assume that L/k is not separably generated in either case, that is, that $s \geq r + 1$. Then $n = s$ by the lemma, whence $n = s \geq s'$ by the theorem. If $n' = s'$, we are through, and if $n' \neq s'$, then $n' = s' + 1 = r' + 1$ by the lemma again. Since $r \geq r'$, this latter equality yields
\[n = s \geq r + 1 \geq r' + 1 = s' + 1 = n', \]
as desired.

The corollary is surprising in view of the troublesomeness usually associated with nonseparably generated extensions.

Before stating the last result, it is convenient to make the definition: k is an (r)-field in case no pure transcendental extension of k of tr.d. r contains an impure subextension of tr.d. r over k. Clearly if n is monotone in \mathfrak{S}_r, then k must be an (m)-field, $m = 0, 1, \ldots, r$. Our next theorem establishes the converse.

THEOREM 2. If k is an (r)-field, and if L/k is a finite extension of tr.d. r, then $n = n(L) \geq n' = n(L')$ for any subextension L'/k of L/k.

PROOF. Let s, r, n, and their primes be defined as in the corollary. If $s' > r'$, then $n > n'$ by the corollary. If L'/k is purely transcendental, then trivially $n \geq n'$. Otherwise $s' = r'$ implies by the lemma that $n' = s' + 1 = r' + 1$. Then, since k is an (r)-field, necessarily $n \geq r + 1 = r' + 1 = n'$, if $r = r'$. If $r > r'$, then clearly $n \geq r \geq r' + 1 = n'$. Q.E.D.

By definition, any field is a (0)-field, and, by Lüroth's theorem, any field is a (1)-field. Thus, the theorem implies the corollary:

COROLLARY. Let k be an arbitrary field. Then n is monotone in the class \mathfrak{S}_1 of finite extensions of tr.d. ≤ 1 over k; in particular, n is monotone in the class \mathfrak{S}_0 of finite algebraic extensions of k.

A consequence of Theorem 2 and the theorem of Castelnuovo-Zariski (see [4]) is the following:

COROLLARY. Let k be an algebraically closed field of characteristic 0. Then n is monotone in the class \mathfrak{S}_2 of finite extensions of tr.d. ≤ 2 over k.

A possible value of Theorem 2 is that in order to show that a given field is not an (r)-field, it is possible to do this by showing that n is not monotone on its finite extensions of tr.d. r, that is, one need not restrict one's attention to the pure transcendental extensions of k.
REFERENCES

