COMBINATORIAL EMBEDDINGS OF MANIFOLDS

BY M. C. IRWIN

Communicated by E. Spanier, September 26, 1961

The following results on embedding manifolds resemble in their form Dehn’s Lemma, the Sphere Theorem, and, especially, embedding theorems obtained for differentiable manifolds by A. Haefliger [1].

Let M, Q be finite combinatorial manifolds of dimensions m and q, respectively. Let $\partial M, \partial Q$ be their boundaries (possibly empty), and let $f: M \to Q$ be a piecewise linear map. We define $\text{sing}(f)$ to be the closure in M of the set $\{x \in M; f^{-1}(x) \neq x\}$. Let $R = M \cap f^{-1}(\partial Q)$, S be a regular neighbourhood of R in M (see [3]) and $T = M - S$.

THEOREM 1. Of the following conditions, (i), (ii), (iii), and any one of (iv), (v), (vi) are sufficient to ensure the existence of a piecewise linear embedding $g: M \subset Q$ such that g is homotopic to f rel. ∂M:

(i) $q \geq m + 3$,
(ii) M is $(2m - q)$ connected,
(iii) Q is $(2m - q + 1)$ connected,
(iv) $f(M) \subset \partial Q$,
(v) $\text{sing}(f) \cap M = \emptyset$ and T is $(3m - 2q + 1)$ connected,
(vi) $\text{sing}(f) \cap R = \emptyset$ and T is $(2m - q - 1)$ connected.

REMARKS. If $M = \emptyset$, we regard condition (iv) as being trivially satisfied. If $f(M) \subset \partial Q$, we have the convention that the only regular neighbourhood of the empty set is the empty set, and so $T = M$.

In particular:

COROLLARY 2. Any element of $\Pi_m(Q)$, where Q is $(2m - q + 1)$ connected ($q \geq m + 3$), may be represented by a piecewise linear embedding of S^m.

THEOREM 3. If $q = 2m$, there exists a piecewise linear embedding

1 This is an abstract of a thesis to be submitted for the degree of Doctor of Philosophy at Cambridge University. The research was carried out under Dr. E. C. Zeeman and maintained by a D.S.I.R. grant.
g: $M \subset Q$ such that g is homotopic to f rel. M provided that M is connected, \hat{M} is non empty and $f(\hat{M})$ is not contained in \hat{Q}.

We recall that if X, X_0 are two complexes, X is said to contract to X_0 by an elementary contraction if $X = X_0 + \sigma + \tau$ where σ and τ are simplexes (boundaries $\partial \sigma$ and $\partial \tau$ respectively), $\sigma = a \partial \sigma$ (a a vertex), $a \partial \sigma \in X_0$, and $\tau \in X_0$. We say that, if X, X_0 are subcomplexes of a combinatorial manifold A, X contracts to X_0 by an admissible elementary contraction in A if X contracts to X_0 by an elementary contraction $X = X_0 + \sigma + \tau$, and the following case does not hold: $\tau \in \partial A$, $\sigma \in \partial A$ (∂A is the boundary of A). We say that X is admissibly collapsible in A if X contracts to a point by a series of admissible elementary contractions in A.

The proof of Theorem 1 leans heavily on the following Lemma, which is an extension of a result of E. C. Zeeman [5; 6] to cover the case of a bounded manifold.

Lemma. If A is a t-dimensional finite combinatorial manifold with boundary ∂A, X an admissibly collapsible subcomplex of A, and K an s-dimensional subcomplex of A such that $K \cap \partial A = J$, and if further

1. J is r-dimensional, $r < s$,
2. $t \geq s + 3$,
3. A is s-connected and ∂A r-connected,

then, in a suitable subdivision βA of A, there exists an $(s+1)$-dimensional subcomplex L of βA such that $\beta K \subset L$, and $\beta X \cup L$ is admissibly collapsible in βA.

Theorem 3 is proved by an argument practically identical to that of Lemma 2.7 in [2].

There are counterexamples to show the necessity for some, perhaps weaker, conditions like (ii) and (iii) of Theorem 1.

Counterexample 1. (Condition (ii) for M closed.) M = real projective space of dimension $2r$, $r > 0$, Q = a combinatorial q-ball B^q, where $q < 2 \cdot 2r$, f = the map taking M to a point of Q. It is well known that there is no embedding of M in Q.

Counterexample 2. (Condition (ii) for M bounded.) $M = S^r \times B^{s+1}$, $\hat{M} = S^r \times S^s$, $Q = B^{2s+2}$, $\hat{Q} = S^{2s+1}$, where r and s are such that S^r admits a continuous r-field of tangent vectors, f is a piecewise linear map of M in Q, taking \hat{M} into \hat{Q} in such a way that two cross-sectional copies of S^r become homologically once linked in S^{2s+1} (see [4; 6]). There exists no embedding g of M in Q with $g|_M = f|_M$ for M.

Sublemma. If $S^r_1, S^r_2 \subset S^{2s+1}$ are homologically once linked combi-
torial s-spheres, there do not exist in B^{2s+2} combinatorial $(s+1)$-balls B^{s+1}_1, B^{s+1}_2 spanning S^1, S^2 and such that $B^{s+1}_1 \cap B^{s+1}_2 = \emptyset$.

Counterexample 3. (Condition (iii)). There exists a $2m$-dimensional orientable finite combinatorial manifold $Q(m \geq 2)$ such that $\Pi_m(Q)$ is nonzero, and no nonzero element of it can be represented by a piecewise linear embedding of S^m in Q. D. B. A. Epstein suggested to me some time ago as a candidate for a counterexample to the Sphere Theorem in four dimensions an S^2 in E^4, which cuts itself orthogonally in just one point, fattened in E^4. This is essentially the manifold Q for $m = 2$. The counterexample is proved by studying the universal covering space of Q.

Counterexample 4. $M = B^m$, $\hat{M} = S^{m-1}$, $Q = S^1 \times B^{2m-1}$, $\hat{Q} = S^1 \times S^{2m-2}$, $f: M \rightarrow Q$ is a piecewise linear map such that $f(\hat{M}) \subset \hat{Q}$ links itself once homologically around the S^1 of \hat{Q}. There exists no piecewise linear embedding g of M in Q such that $f|\hat{M} = g|\hat{M}$. This follows from Counterexample 3, or may be proved independently by applying the Sublemma to the universal covering space of Q. It shows the necessity for the condition that $f(\hat{M})$ should not be contained in \hat{Q} in Theorem 3.

References

Queens' College, Cambridge