Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

On Hilbert's inequality in $n$ dimensions


Authors: N. G. de Bruijn and Herbert S. Wilf
Journal: Bull. Amer. Math. Soc. 68 (1962), 70-73
DOI: https://doi.org/10.1090/S0002-9904-1962-10726-5
MathSciNet review: 0176015
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. E. H. Copsey, H. Frazer and W. W. Sawyer, Empirical data on Hilbert's inequality, Nature 161 (1948), 361. MR 23359
  • 2. J. Todd, The condition of the finite segments of the Hilbert matrix, Contributions to the solution of systems of linear equations and the determination of eigenvalues, pp. 109-116, Nat. Bur. Standard Appl. Math. Ser. No. 39, U. S. Government Printing Office, Washington, D. C., 1954. MR 68304
  • 3. O. Taussky, A remark concerning the characteristic roots of the finite segments of the Hilbert matrix, Quart. J. Math. Oxford Ser. (2) 20 (78) (1949), 80-83. MR 30567
  • 4. R. A. Fairthorne and J. C. P. Miller, Hilbert's double series theorem and principal latent roots of the resulting matrix, Math. Comput. 3 (26) (1949), 399-400. MR 29541
  • 5. H. Frazer, Note on Hilbert's inequality, J. London Math. Soc. 21 (1946), 7-9. MR 18226
  • 6. H. Widom, On the eigenvalues of certain Hermitian operators, Trans. Amer. Math. Soc. 88 (1) (1958), 491-522. MR 98321
  • 7. H. Widom, Extreme eigenvalues of translation kernels, Trans. Amer. Math. Soc. 100 (2) (1961), 252-262. MR 138980


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1962-10726-5

American Mathematical Society