ENTIRE FUNCTIONS AND INTEGRAL TRANSFORMS

BY LOUIS DE BRANGES

Communicated by R. P. Boas, November 25, 1961

If \(E(z) \) is an entire function which satisfies

\[
|E(z)| < |E(x)|
\]

for \(y > 0 \ (z = x + iy) \), let \(\mathcal{H}(E) \) be the corresponding Hilbert space of entire functions \(F(z) \) such that

\[
\|F\|_2^2 = \int |F(t)/E(i)|^2 \, dt < \infty
\]

and

\[
|F(z)|^2 \leq \|F\|^2 \left[|E(z)|^2 - |E(z)|^2 \right]/[2\pi(\bar{z} - z)]
\]

for all complex \(z \). The space is introduced in [7], where it is characterized by three axioms. If \(E(a, z) \) and \(E(b, z) \) are entire functions which satisfy (1), then \(\mathcal{H}(E(a)) \) will be contained isometrically in \(\mathcal{H}(E(b)) \) if these functions satisfy the hypotheses of Theorem VII of [8]. Isometric inclusions of spaces of entire functions are a basic idea in [9] and [10]. A fundamental property of these inclusions has only now become available.

Theorem I. If \(E(a, z), E(b, z), \) and \(E(c, z) \) are entire functions which satisfy (1) and have no real zeros, and if \(\mathcal{H}(E(a)) \) and \(\mathcal{H}(E(b)) \) are contained isometrically in \(\mathcal{H}(E(c)) \), then either \(\mathcal{H}(E(a)) \) contains \(\mathcal{H}(E(b)) \) or \(\mathcal{H}(E(b)) \) contains \(\mathcal{H}(E(a)) \).

The formal proof depends on techniques of [2] and [3] for handling difference quotients. To make it precise, one must show that if \(f(z) \) and \(g(z) \) are entire functions of minimal exponential type such that

\[
|yf(z)g(z)| \leq |f(z)| + |g(z)|
\]

for all complex \(z \), then \(f(z)g(z) \) vanishes identically. This is proved by a method of Carleman, for whose explanation we are indebted to M. Heins [16]. By Theorem III of [10], the theorem has applications for certain kinds of integral transforms.

Theorem II. Let \(u(x) \) and \(v(x) \) be square integrable functions defined in \([0, 1]\), such that

\[
u(x)v(x) = \bar{v}(x)u(x)
\]
a.e., and which are essentially linearly independent when restricted to
any subinterval of $[0, 1]$. Let T be the bounded linear transformation of $L^2(0, 1)$ into itself defined by T: $g \rightarrow f$ if

$$f(x) = \int_x^1 g(t) [u(x)v(t) - v(x)u(t)] dt$$

for almost all values of x. Let M be a closed subspace of $L^2(0, 1)$ which is invariant under T in the sense that Tg belongs to M whenever g belongs to M. Then, M is characterized by a number a in $[0, 1]$ and coincides with the set of functions which vanish a.e. for $x \geq a$.

The same conclusion is available from the work of Kalisch [17] when $u(x)$ and $v(x)$ satisfy additional differentiability conditions. The point of Theorem II is that no such restrictions are necessary. Theorem II may be used to give a proof of uniqueness in the inverse Sturm-Liouville problem studied by Levinson [19].

Theorem III. Let $\psi(x)$ be a uniformly continuous, increasing function of real x such that

$$\int (1 + t^2)^{-1} |\psi(t) - \tau t|^2 dt < \infty$$

for some number $\tau > 0$. If $0 < a < \tau$, then there is a measure μ of finite total variation, supported in the points t where $\psi(t) \equiv 0$ modulo π, such that $\int e^{it\alpha} d\mu(t)$ vanishes in $[-a, a]$ and does not vanish identically. Furthermore, the measure may be chosen of this special form: There is an entire function $S(z)$ of exponential type a which is real for real z and has only real simple zeros, all at points t where $\psi(t) \equiv 0$ modulo π, and

(2) $$\int (1 + t^2)^{-1} \log^+ |S(t)| dt < \infty$$

and

$$\sum_{S(t) = 0} |S'(t)|^{-1} < \infty.$$

The measure μ is supported in the zeros of $S(z)$ and has mass $S'(t)^{-1}$ at each such zero t.

The formal part of the proof depends on the formula of [6] to obtain a measure, and on the convexity methods of [4] and [5] to obtain an entire function. To implement these procedures, we use a theorem of Beurling and Malliavin [20]: If $K(z)$ is an entire function of exponential type which satisfies (2), then for each $a > 0$ there is a nonzero entire function $F(z)$ of exponential type a, bounded on the
real axis, such that $K(z)F(z)$ is bounded on the real axis. Under the hypotheses of Theorem III, an entire function of minimal exponential type, which remains bounded on the set of points t where $\psi(t)=0$ modulo π, is necessarily a constant. We should like to acknowledge our indebtedness to Chapter VIII of Levinson [18], which suggested the above theorem. The results of Levinson, Chapter IX, can be significantly bettered on using another theorem of Levinson, as it is formulated in [3]. The trick is to use Theorem XII of [9] to convert a result on nonvanishing Fourier transforms into an existence theorem for entire functions of minimal exponential type.

Theorem IV. Let (a_n, b_n) be a sequence of disjoint intervals to the right of $x=1$ with lengths b_n-a_n bounded away from zero and with

$$\sum (b_n - a_n)^2a_n^{-1}b_n^{-1} = \infty.$$

Then there exists an entire function of minimal exponential type which remains bounded on the real complement of $\bigcup(a_n, b_n)$ and is not a constant.

References

New York University