MARKOV PROCESSES WITH IDENTICAL HITTING DISTRIBUTIONS

BY R. M. BLUMENTHAL, R. K. GETOOR AND H. P. MCKEAN, JR.¹

Communicated by J. L. Doob, February 5, 1962

1. Introduction. Throughout \(X \) and \(X^* \) are to be time homogeneous Markov processes taking values in a locally compact, noncompact, separable metric space \(E \), and both satisfying Hunt’s condition (A) \([2, \text{pp. 48–50}]\). The purpose of this note is to give rather general conditions under which there exists a continuous random time change \(\tau(t) \), in the sense of \([4, \text{p. 104}]\), such that \(X(\tau(t)) \) and \(X^*(t) \) are equivalent, that is that they have the same transition function. Obviously a necessary condition, at least if \(\tau(t) \to \infty \) as \(t \to \infty \), is that the two processes have the same hitting distributions in the sense of hypothesis (hi) below. Our theorem is that under a mild additional assumption this condition is also sufficient. A full proof will be published elsewhere.

2. Hypotheses. Let \(P(t, x, A) \) be the transition function for the process \(X \), \(P_x \) and \(E_x \) the probabilities and expectations for \(X \) starting at \(x \), \(T_A \) the infimum of the strictly positive \(t \) such that \(X(t) \) is in the subset \(A \) of \(E \) and \(H_A(x, B) = P_x(X(T_A) \in B, T_A < \infty) \), \(A \) and \(B \) being Borel sets. Analogous quantities for \(X^* \) are denoted by \(P^*, E^*, T^* \) and \(H^* \) with appropriate arguments. Our hypotheses are these: (hi) for each \(x \) in \(E \) and compact \(K \), \(H_K(x, \cdot) = H^*_K(x, \cdot) \), and (h₂) there is an increasing sequence \(\{G_n\} \) of compact sets whose union is \(E \) and such that, for each \(x \) and \(n \), \(P_x(T_{G_n} < \infty) = 1 \). The \(c \) here denotes complement.

3. Outline of construction. Fix one of the sets \(G = G_n \) and suppress the subscript. If \(f_\lambda(x) = E_x^\ast(1 - \exp(-\lambda T_{G_n}^\ast)) \), \(\lambda > 0 \), then \(f_\lambda \) is excessive for the process \(X^* \) terminated when it first leaves \(G \). By a theorem of Dynkin [1] it is then also excessive for \(X \) similarly terminated. One can show that \(f_\lambda \) is regular enough that arguments of Šur [5] and Volkonskii [6] apply to it and yield a continuous additive functional \(\phi_\lambda(t) \) satisfying \(E_x \phi_\lambda(T_{G_n}^\ast) = f_\lambda(x) \). One next shows that \(\lambda^{-1}\phi_\lambda(t) \) increases, as \(\lambda \to 0 \), to a continuous strictly increasing additive functional which, reintroducing the index \(n \), we call \(\phi^n(t) \). The \(\phi^n \) for varying \(n \) are shown to be compatible in the sense that if \(m > n \) then for

¹ During the course of this research all three authors were partly supported by the National Science Foundation.

372
all x with P_x probability one $\phi^n(t) = \phi^n(t)$ throughout the interval $t < T_\alpha^n$. The limit as $n \to \infty$ of $\phi^n(t)$ is a continuous additive functional $\phi(t)$.

The desired time change $\tau(t)$ is the functional inverse to ϕ. That $X(\tau(t))$ is equivalent to $X^*(t)$ follows from the computation of certain potentials.

4. Remarks. Usually the hypothesis (h$_2$) may be eliminated. For example if the semi-group for one of the processes leaves invariant the space of bounded continuous functions on E then (h$_1$) alone implies the existence of the desired time change.

In [3] there appears a more explicit form of our result in case X is Brownian motion in Euclidean space and X^* is a diffusion process with the same hitting distributions. The construction makes use of potential theoretic facts which are available for transition functions having a sort of symmetry, but not for those as general as the ones we consider here.

The results announced here are also valid for processes having finite terminal times.

References

The Institute for Advanced Study,
The University of Washington and
Massachusetts Institute of Technology