1. Preliminary definitions.

Definition 1.1. A subcategory \(A' \) of a category \(A \) is called left (resp., right) reflective in \(A \) if there exists a functor \(L: A \to A' \) (resp., \(R: A \to A' \)) which has the inclusion functor \(A' \to A \) as a left (resp., right) adjoint (see Kan [5]). \(L \) (resp., \(R \)) is called a left (resp., right) reflection of \(A \) in \(A' \).

Let \(D \) be a small category (i.e., the collection of objects of \(D \) is a set) and let \(F(D, A) \) denote the category of (covariant) functors from \(D \) to \(A \) and natural transformations of such functors. Identify \(A \) with the subcategory of \(F(D, A) \) consisting of constant functors. A left (resp., right) reflection of \(F(D, A) \) in \(A \) (when it exists) will be denoted by \(L^D \) (resp., \(R^D \)) and its values will be called left (resp., right) roots (cf. Freyd [1] and Kan [5]). Examples of left roots are direct products, difference kernels, inverse limits (inv lim), and pullbacks. Examples of right roots are direct sums, difference cokernels, direct limits (dir lim), and pushouts. All general properties of these operations are consequences of properties of roots.

Definition 1.2. If \(L^D: F(D, A) \to A \) (resp., \(R^D: F(D, A) \to A \)) exists for every small category \(D \), then \(A \) is called left (resp., right) complete. A left and right complete category is called complete. A left (resp., right) complete abelian category is called left (resp., right) perfect if inverse (resp., direct) limits preserve exactness. (Cf. Axioms A B 3, A B 5 and their duals in Grothendieck [3].)

Definition 1.3. A category \(A \) is called finitely generated (see Freyd [1]) if there exists a family of generators (see Grothendieck [3]) \(\{G_a\} \) such that any morphism of a \(G_a \) into the supremum of an increasingly directed family of subobjects of a given object factors through one of the subobjects.

Examples. The category of sets is finitely generated and complete. The categories of abelian groups, modules over a fixed ring, etc. are complete, right perfect, and finitely generated.

2. Sheaves. Let \(X \) be a set and let \(T_X \) be a topology on \(X \) (i.e., a
collection of open sets). Regard T_X as a category whose objects are the open sets $U \in T_X$ and with a unique morphism $U \to V$ if and only if $V \subseteq U$. An open covering U of an open set $U \subseteq X$ is called a strong covering if it is closed under finite intersections.

Definition 2.1. The category $F(T_X, A)$ is called the category of presheaves on X with values in A. A presheaf $F: T_X \to A$ is called a sheaf if given any $U \in T_X$ and any strong covering $\{U_i\}$ of U, we have $F(U) = \text{inv lim} F(U_i)$. $S(X, A)$ will denote the full subcategory of $F(T_X, A)$ determined by all sheaves, and will be called the category of sheaves on X with values in A.

If $f: X \to Y$ is a continuous map, then f induces a functor $\tilde{f}: T_Y \to T_X$ by the rule $\tilde{f}(V) = f^{-1}(V)$ for $V \in T_Y$. Composition on the "left" with \tilde{f} determines a functor $f_*: F(T_X, A) \to F(T_Y, A)$ (i.e., if $F: T_X \to A$ then $f_* F = F \circ f$; diagrammatically, $T_Y \to T_X \to A$; hence "left" above). Since composition on the left preserves left roots, f_* takes sheaves on X into sheaves on Y. Nevertheless, we regard f_* as a functor $f_*: S(X, A) \to F(T_Y, A)$. Our main aim is to construct a left adjoint f^* to the functor f_* (see Grothendieck [4]).

Let A be right complete and let $F: T_X \to A$ be a presheaf. For each $x \in X$, let $F_x = \text{dir lim}_{\mathcal{U} \in \mathcal{U}} F(U)$ and let $\rho_{x, U}: F(U) \to F_x$ be the canonical morphism. By definition of left roots there is a unique $\rho_x: F(U) \to \prod_{x \in U} F_x$ such that $\rho_x \circ \rho_U = \rho_{x, U}$, where $\rho_x: \prod_{x \in U} F_x \to F_x$ is the projection onto the xth factor. Let $P_x F$ be the presheaf such that $P_x F(U) = \prod_{x \in U} F_x$. It is easily checked that $P_x F$ is a sheaf and that $\rho_F: F \to P_x F$ (where the components of ρ_F are the morphisms ρ_U above) is a morphism of presheaves.

Lemma 2.2. Let A be complete and finitely generated. If F is a sheaf then $P_x F: F \to P_x F$ is a monomorphism.

Main Theorem. Let A be complete and finitely generated.

(i) $f_*: S(X, A) \to F(T_Y, A)$ has a left adjoint $f^*: F(T_Y, A) \to S(X, A)$. For any $F \in F(T_Y, A)$, we have $(f^* F)_x = F(f(x))$.

(ii) If, in addition, A is abelian and right perfect, then $S(X, A)$ is abelian, complete, right perfect, and finitely generated. f^* is exact, and furthermore, a sequence $0 \to F' \to F \to F'' \to 0$ in $S(X, A)$ is exact if and only if $0 \to F'_x \to F_x \to F''_x \to 0$ is exact in A for every $x \in X$.

Remarks. (i) If f is the identity map $i: X \to X$, then i_* is just the inclusion $S(X, A) \to F(T_X, A)$. Statement (i) then asserts that the category of sheaves is a right reflective subcategory of the category of presheaves. $i^* F$ is the sheaf associated with the presheaf F. The proof in this case is extraordinarily simple. Essentially, $i^* F$ is the
intersection of all subsheaves of P_xF through which $p_F: F \to P_XF$ factors.

(ii) The rest of sheaf theory now follows naturally. For example, to find the sheaf agreeing with a given sheaf F on a locally closed subspace $A \subseteq X$ and zero on $X - A$; consider two cases: (a) A is closed; then $j_!j^*F$ has the desired properties (where $j: A \to X$ is the inclusion). Furthermore, $F \to j_!j^*F$ is an epimorphism. (b) A open. Let $k: (X - A) \to X$ be the inclusion. Then the kernel of the epimorphism $F \to k_*k^*F$ is the desired sheaf. (See Godement [2].)

Duality theorems are handled by considering cosheaves; i.e., sheaves with values in the dual category to a given category. Čech cohomology is definable and, with suitable modifications, occurs in the usual spectral sequences. To obtain the full strength of the Čech theory one must add to A the hypothesis that direct products are exact.

References

Columbia University