
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

SOME CONVOLUTION ALGEBRAS OF MEASURES ON [1, ∞) AND A REPRESENTATION THEOREM FOR LAPLACE-STIELTJES TRANSFORMS

BY LOUIS BRICKMAN

Communicated by Einar Hille, April 19, 1962

1. Introduction. In [1] we studied the set \(\mathcal{A}_R \) of power series \(\sum_{n=1}^{\infty} a_n z^n \) convergent for \(|z| < R, 0 < R \leq 1 \), under the multiplication

\[
\left(\sum_{n=1}^{\infty} a_n z^n \right) \left(\sum_{n=1}^{\infty} b_n z^n \right) = \sum_{n=1}^{\infty} \left(\sum_{rs=n} a_r b_s \right) z^n.
\]

It was found that \(\mathcal{A}_R \), with the usual addition and scalar multiplication, and with the topology of uniform convergence on compact subsets of the disk \(|z| < R \), is a locally convex algebra with identity. Also \(\sum_{n=1}^{\infty} a_n z^n \) is invertible (has an inverse in \(\mathcal{A}_R \) with respect to the above multiplication) if and only if \(a_1 \neq 0 \). As a consequence we obtained the following expansion theorem for analytic functions (E. Hille [2]).

Theorem. Let \(f(z) \) be analytic for \(|z| < R, 0 < R \leq 1 \), with \(f(0) = 0 \). Then associated with any function \(g(z) \) analytic in \(|z| < R \) with the properties \(g(0) = 0, g'(0) \neq 0 \), there is a unique expansion of the form

\[
f(z) = \sum_{n=1}^{\infty} c_n g(z^n), \quad |z| < R.
\]

Our object in this paper is to obtain an analogous result for Laplace-Stieltjes integrals (Theorem 1 below). We shall base the discussion on the theory of convolution algebras of complex measures on \([0, \infty)\).
as described in [3]. More precisely, we shall need the adaptation of this theory to the multiplicative semi-group \([1, \infty)\).

2. Convolution algebras depending on a weight function. In this section we record as Proposition 1 the appropriate modifications of the needed portions of [3].

Proposition 1. Let \(\phi(t)\) be a real-valued Borel measurable function defined on \([1, \infty)\) satisfying

\[
0 < \phi(t_1 t_2) \leq \phi(t_1) \phi(t_2), \quad t_1, t_2 \geq 1; \quad \phi(1) = 1.
\]

Let \(\mathcal{B}\) be the ring of bounded Borel subsets of \([1, \infty)\), and let \(S(\phi)\) denote the set of complex measures \(a\) on \(\mathcal{B}\) such that

\[
\left\| a \right\| = \int_1^\infty \phi(t) d\left\| a \right\| (t) < \infty.
\]

Finally let

\[
(a b)(B) = [a \times b]((x, y) \mid xy \in B, \ x \geq 1, \ y \geq 1);
\]

\[
a, b \in S(\phi), \ B \in \mathcal{B}.
\]

Then \(S(\phi)\) is a commutative Banach algebra with norm defined by (2), with multiplication defined by (3), with the obvious definitions of addition and scalar multiplication, and with identity defined by a unit mass at 1. Let

\[
\omega = \inf\{\log \phi(t) / \log t \mid t > 1\}.
\]

If \(\omega = -\infty\), then \(a\) is invertible if and only if \(a(\{1\}) \neq 0, \ a \in S(\phi)\).

Proof. Let \(\mathcal{B}'\) be the ring of bounded Borel subsets of \([0, \infty)\). Let the function \(\phi'\) be defined by \(\phi'(t) = \phi(e^t), \ t \geq 0\). Then \(\phi'\) satisfies the requirements given in [3] for a weight function for the additive semi-group \([0, \infty)\). Hence the set \(S'(\phi')\) of complex measures on \(\mathcal{B}'\) with finite \(\phi'\)-norms is a commutative Banach algebra with identity defined by a unit mass at 0. The proof of this statement, given in [3], can readily be adapted to \(S(\phi)\). Let us, however, note that \(S'(\phi')\) and \(S(\phi)\) are isomorphic. Indeed, the exponential function provides an isomorphism of the underlying semi-groups with preservation of bounded Borel sets \(B' \leftrightarrow B\). This induces the one to one correspondence of measures

\[
a' \leftrightarrow a, \ a'(B') = a(B); \ a' \in S'(\phi'), \ a \in S(\phi), \ B' \in \mathcal{B}', \ B \in \mathcal{B},
\]

and this correspondence preserves addition, scalar multiplication, convolution, total variation, and norm. Therefore \(S(\phi)\) is a Banach
algebra as described. To prove the last assertion we note that
\(\omega = \inf \{ \log \phi'(t)/t \mid t > 0 \} \). The assertion now follows from Theorem 4.18.5 of [3] and the isomorphism (5).

3. The special case \(\phi_\sigma(t) = e^{-\sigma(t-1)}, \sigma > 0 \), and Laplace-Stieltjes transforms. We have for \(t_1, t_2 \geq 1 \)
\[
\phi_\sigma(t_1t_2) = e^{-\sigma(t_1t_2-1)} \leq e^{-\sigma(t_1+t_2-2)} = \phi_\sigma(t_1)\phi_\sigma(t_2),
\]
and it is clear that \(\phi_\sigma \) is a suitable weight function for \([1, \infty)\). Furthermore
\[
\log \phi_\sigma(t)/\log t = -\sigma(t-1)/\log t \to -\infty \text{ as } t \to \infty.
\]

Therefore we have the following result.

Proposition 2. \(S(\phi_\sigma) \) is a Banach algebra of the type described in Proposition 1. The invertible elements \(a \) of \(S(\phi_\sigma) \) are characterized by the condition \(a(\{1\}) \neq 0 \).

We can now establish the representation theorem alluded to in the Introduction.

Theorem 1. Let \(\sigma > 0 \). Let
\[
(6) \quad f(s) = \int_1^\infty e^{-st}da(t), \quad g(s) = \int_1^\infty e^{-st}db(t), \quad \Re s \geq \sigma,
\]
where \(a \) and \(b \) are complex measures on \(\mathfrak{M} \), and the integrals are absolutely convergent. Then
\[
(7) \quad e^{s}g(s) \to b(\{1\}) \text{ as } \Re s \to \infty.
\]
If this limit is not zero, there is a complex measure \(c \) on \(\mathfrak{M} \) such that
\[
(8) \quad f(s) = \int_1^\infty g(st)dc(t), \quad \Re s \geq \sigma,
\]
the integral converging absolutely.

Proof. For \(\Re s \geq \sigma \) we have \(e^{s}g(s) = \int_1^\infty e^{-\sigma(t-1)}db(t) \). But \(e^{-\sigma(t-1)} \to \chi_{\{1\}}(t) \) as \(\Re s \to \infty \). Thus we obtain (7) by Lebesgue's dominated convergence theorem. By (6), \(a, b \in S(\phi_\sigma) \), and by Proposition 2 and our assumption regarding (7), \(b \) is invertible. Hence there is a unique \(c \in S(\phi_\sigma) \) such that \(a = bc \). From this equation and the basic definition (3) we conclude
\[
\int_1^\infty e^{-st}da(t) = \int_1^\infty \int_1^\infty e^{-st}d[b \times c](x, y), \quad \Re s \geq \sigma.
\]
By the Fubini theorem this equation implies (8).

4. Remarks. If the integrals in (6) are absolutely convergent in an open half-plane Re \(s > \rho, \rho \geq 0 \), then for every \(\sigma > \rho \) there is a measure \(\mathcal{C}_\sigma \) such that (8) holds. To show that \(\mathcal{C}_\sigma \) is independent of \(\sigma \) we reason as follows. \(a \) and \(b \) belong to the set of measures \(\mathcal{S}_\rho = \bigcap_{\sigma > \rho} \mathcal{S}(\phi_\sigma) \).
In each algebra \(\mathcal{S}(\phi_\sigma), \sigma > \rho, b \) has an inverse, but since these algebras are linearly ordered by inclusion, all these inverses are the same. Thus \(b^{-1} \) exists in \(\mathcal{S}_\rho \). But then \(c = b^{-1}a \) also belongs to \(\mathcal{S}_\rho \). Hence we have a single formula (8) holding in the given half-plane Re \(s > \rho \). The set \(\mathcal{S}_\rho \) is the analog of the set \(\mathcal{A}_R \) of power series. Like \(\mathcal{A}_R \), \(\mathcal{S}_\rho \) is a complete, countably-normed algebra.

In the representation (8) of \(f(s) \), we have regarded \(g \) as having been given, and \(c \) as having been determined. We can reverse the situation and choose any \(c \) subject to the condition \(c(\{1\}) \neq 0 \). The equation \(a = bc \) is then uniquely solvable for \(b \) in the appropriate algebra. (8) now follows as before, \(g \) being the transform of \(b \).

References

Cornell University