INERTIA THEOREMS FOR MATRICES: THE SEMI-DEFINITE CASE

BY DAVID CARLSON AND HANS SCHNEIDER

Communicated by A. S. Householder, June 4, 1962

1. The inertia of a square matrix A with complex elements is defined to be the integer triple $\text{In} = (\pi(A), \nu(A), \delta(A))$, where $\pi(A)\{\nu(A)\}$ equals the number of eigenvalues in the open right \{left\} half plane, and $\delta(A)$ equals the number of eigenvalues on the imaginary axis. The best known classical inertia theorem is that of Sylvester: If $P > 0$ (positive definite) and H is Hermitian, then $\text{In} P H = \text{In} H$. Less well known is Lyapunov's theorem [2]: There exists a $P > 0$ such that $\sigma(AP) = \frac{1}{2}(AP + PA^*) > 0$ if and only if $\text{In} A = (n, 0, 0)$. Both classical theorems are contained in a generalization (Taussky [4], Ostrowski-Schneider [3]) which we shall call the

MAIN INERTIA THEOREM. For a given A, there exists a Hermitian H such that $\text{In} (AH) \geq 0$ if and only if $\delta(A) = 0$. If $\sigma(AH) > 0$, then $\text{In} A = \text{In} H$.

2.1. In this note we consider the case $\sigma(AH) \leq 0$ which is far more complicated than the case $\sigma(AH) > 0$. We do not here solve the problem of all the possible relations of $\text{In} H$ to $\text{In} A$, except under additional assumptions.

Theorem 1. Let A be a given matrix for which all elementary divisors of imaginary eigenvalues are linear. If H is a Hermitian matrix such that $\sigma(AH) \geq 0$, then $\pi(H) = \pi, \nu(H) = \nu$ satisfy

(1) $\pi \leq \pi(A) + \delta(A), \quad \nu \leq \nu(A) + \delta(A),$

respectively, and

(2) $\text{rank} \sigma(AH) \leq \pi(A) + \nu(A)$.

Further, for any triple (π, ν, δ) for which $\pi + \nu + \delta = n$, and π, ν satisfy (1), there exists an H for which $\sigma(AH) \geq 0$ and $\text{In} H = (\pi, \nu, \delta)$. Thus (1) is in a sense the best possible inequality.

A more precise result may be proved if $\text{rank} \sigma(AH) = \pi(A) + \nu(A)$.

2.2. Theorem 2 concerns a matrix consisting of just one Jordan
block with one imaginary root. Its proof is largely computational. For assertion (4) (below) we use Cauchy's theorem on the separation of eigenvalues of a Hermitian matrix by the eigenvalues of a principal minor.

Theorem 2. Let \(A = \alpha I + U \), where \(\alpha \) is pure imaginary and \(U \) is the matrix with 1 in the first superdiagonal and 0 elsewhere. If \(H \) is Hermitian of rank \(r \) and \(K = \Re(AH) \geq 0 \) is of rank \(s \), then

\[
(3) \quad 2s \leq r,
\]

and for \(\pi(H) = \pi, v(H) = v \),

\[
(4) \quad |\pi - v| \leq 1,
\]

\[
(5) \quad h_{ij} = 0 \quad \text{if } i + j > r + 1,
\]

\[
(6) \quad k_{ij} = 0 \quad \text{if } i > r/2.
\]

Again, the inequalities (3) and (4) are best possible, in the sense that if \(r, s, \pi, v \), with \(\pi + v = r \), are non-negative integers satisfying (3) and (4) then we can find an \(H \) such that \(\Re(AH) \geq 0 \), and \(r = \text{rank } H, s = \text{rank } \Re(AH), \pi = \pi(H) \) and \(v = v(H) \).

As a corollary of Theorem 2 we obtain a general existence theorem:

Corollary. For any matrix \(A \), there exists a nonsingular Hermitian \(H \) such that \(\Re(AH) \geq 0 \).

In the special case that all elementary divisors of imaginary roots are linear, this result is known; cf. Givens [1].

2.3. **Theorem 3.** Let \(A \) be a given matrix. If \(H \geq 0 \) and \(\Re(AH) \geq 0 \), then

\[
(7) \quad \text{rank } H \leq \pi(A) + p(A),
\]

where \(p(A) \) is the number of elementary divisors of imaginary roots. The inequality (7) is best possible.

Corollary 1. For a given matrix \(A \), there exists an \(H > 0 \) for which \(\Re(AH) \geq 0 \) if and only if

\[
(8) \quad v(A) = 0,
\]

all elementary divisors of imaginary eigenvalues of \(A \) (if any) are linear.

Corollary 2. If \(\Re(A) \geq 0 \) and \(H > 0 \) then all elementary divisors of imaginary eigenvalues of \(AH \) are linear.

When \(H = I \), Corollary 2 reduces to part of Theorem 2 of [3].
3.1. The proof of the Main Inertia Theorem hinges on the following lemma: If \(\sigma(AB) > 0 \), then \(B \) is nonsingular. In this section we shall obtain a generalization of the Main Theorem by considering matrices with fixed null-space \(\mathfrak{N} \). By \(\mathfrak{N}(A) \) we shall denote the null-space of \(A(x \in \mathfrak{N}(A): Ax = 0) \) and \(\mathfrak{N}^\perp \) will be the orthogonal complement of \(\mathfrak{N}(x \in \mathfrak{N}^\perp: y^*x = 0 \text{ for all } y \in \mathfrak{N}) \). Our results depend on the easily proved Theorem 4 which takes the place of the lemma quoted above.

We define \(\text{In} A \leq \text{In} B \) if \(\pi(A) \leq \pi(B) \) and \(\nu(A) \leq \nu(B) \) (\(A, B \) need not be of the same order), and \(\text{In} A = \text{In} B \) if \(\pi(A) = \pi(B) \) and \(\nu(A) = \nu(B) \).

Theorem 4. If \(\sigma(AB) \geq 0 \) then
\[
\begin{align*}
\mathfrak{N}(\sigma(AB)) & \supseteq \mathfrak{N}(B), \\
A \mathfrak{N}(H)^\perp & \subseteq \mathfrak{N}(H)^\perp, \\
\text{In}(A \mid \mathfrak{N}(H)^\perp) & \leq \text{In} H.
\end{align*}
\]
Here \(A \mid \mathfrak{N}(H)^\perp \) is the restriction of \(A \) to \(\mathfrak{N}(H)^\perp \).

As an immediate corollary to the proposition we have

Corollary. If \(\sigma(AB) \geq 0 \) and \(\text{In} (A \mid \mathfrak{N}(H)) = (0, 0, \delta) \) then
\[
\text{In} A = \text{In}(A \mid \mathfrak{N}(H)^\perp) \leq \text{In} H.
\]

In particular if \(\sigma(AB) \geq 0 \) and \(H \) is nonsingular, then \(\text{In} A \leq \text{In} H \).

3.2. It is interesting to note that in our next theorem, the inequalities will go in the opposite direction. This theorem reduces to the Main Inertia Theorem when \(\mathfrak{N} = (0) \).

Theorem 5. Let \(\mathfrak{N} \) be a subspace of \(V \). There exists a Hermitian \(H \) such that
\[
\begin{align*}
\sigma(AB) & \geq 0, \\
\mathfrak{N}(\sigma(AB)) & = \mathfrak{N}(H) = \mathfrak{N}.
\end{align*}
\]
if and only if
\[
\begin{align*}
A \mathfrak{N}(H)^\perp & \subseteq \mathfrak{N}(H)^\perp \\
\delta(A \mid \mathfrak{N}(H)^\perp) & = 0.
\end{align*}
\]
If (13) and (14) hold, then
\[
\text{In} H = \text{In}(A \mid \mathfrak{N}(H)^\perp) \leq \text{In} A.
\]
Corollary 1. Let A and \mathfrak{m} satisfy conditions (15) and (16). If $\mathfrak{m}(A H) \geq 0$ and $\mathfrak{m}(H) \supseteq \mathfrak{m}$, then $\mathrm{In} H \subseteq \mathrm{In}(A \mid \mathfrak{m}^+) \subseteq \mathrm{In} A$.

Corollary 2. If $\delta(A) = 0$ and $\mathfrak{m}(A H) \geq 0$, then $\mathrm{In} H \subseteq \mathrm{In} A$. If, in addition, $\delta(H) = 0$ (i.e., H is nonsingular), then $\mathrm{In} H = \mathrm{In} A$.

Corollary 3. If $\mathfrak{m}(A H) \geq 0$ and rank $\mathfrak{m}(A H) = \text{rank} H = \pi(A) + r(A)$, then, again, $\mathrm{In} H = \mathrm{In} A$.

3.3. Suppose the conditions of Theorem 5 are fulfilled and there exists a K such that $\mathfrak{m}(AK) \geq 0$, and $\mathfrak{m}(\mathfrak{m}(AK)) = \mathfrak{m}(K) = \mathfrak{m}$. A and \mathfrak{m} being given. When does every H satisfying $\mathfrak{m}(\mathfrak{m}(AH)) = \mathfrak{m}$ (and not necessarily satisfying $\mathfrak{m}(A H) \geq 0$) also satisfy $\mathfrak{m}(H) = \mathfrak{m}$? For $\mathfrak{m} = (0)$, the question is: When does $\mathfrak{m}(A H) = 0$ imply $H = 0$? The conditions for this are well-known (Corollary below). Thus our Theorem 6 is a generalization of the known Corollary 6.

We require the following definition. If A and B are square matrices (possibly of different orders), we let

$$T(A, B) = \prod_{i,j} (\alpha_i + \beta_j)$$

the product being taken over all pairs of eigenvalues (α_i, β_j) of A and B, and for the sake of convenience we write $T(A) = T(A, A^*)$. If A is the empty matrix (an operator on a 0-dimensional space), certain consistency conditions force us to take $T(A, B) = 1$.

Theorem 6. Let \mathfrak{m} be a subspace of V, and A a matrix for which $A \mathfrak{m}^+ \subseteq \mathfrak{m}^+$. If

\begin{equation}
T(A \mid \mathfrak{m}^+, A^* \mid \mathfrak{m}) \cdot T(A^* \mid \mathfrak{m}) \neq 0
\end{equation}

then $\mathfrak{m}(\mathfrak{m}(AH)) \supseteq \mathfrak{m}$ implies $\mathfrak{m}(H) \supseteq \mathfrak{m}$. Conversely, if

\begin{equation}
T(A \mid \mathfrak{m}^+, A^* \mid \mathfrak{m}) \cdot T(A^* \mid \mathfrak{m}) = 0
\end{equation}

then there exists a Hermitian H such that $\mathfrak{m}(\mathfrak{m}(AH)) = \mathfrak{m}$ but $\mathfrak{m}(H) \supsetneq \mathfrak{m}$.

Corollary 1. There exists a nonzero H such that $\mathfrak{m}(AH) = 0$ if and only if $T(A) = 0$.

Corollary 2. Let $\mathfrak{m}(AH) \geq 0$ and let $\mathfrak{m} = \mathfrak{m}(\mathfrak{m}(AH))$. If $A \mathfrak{m}^+ \subseteq \mathfrak{m}^+$ and (17) holds then $\mathfrak{m}(\mathfrak{m}(AH)) = \mathfrak{m}(H)$.

Corollary 3. Let $\mathfrak{m}(AK) \geq 0$ and $\mathfrak{m} = \mathfrak{m}(K) = \mathfrak{m}(\mathfrak{m}(AK))$. If (17) holds, then $\mathfrak{m}(AH) \geq 0$ and $\mathfrak{m}(\mathfrak{m}(AH)) = \mathfrak{m}$ implies that $\mathfrak{m}(H) = \mathfrak{m}$. Conversely if (18) holds, then there exists a Hermitian H such that $\mathfrak{m}(AH) \geq 0$ and $\mathfrak{m}(\mathfrak{m}(AH)) = \mathfrak{m}$ but $\mathfrak{m}(H)$ is properly contained in \mathfrak{m}.
As in [3], the matrix A is called H-stable if, for Hermitian matrices H, $AH = (n, 0, 0)$ if and only if $H > 0$. A necessary and sufficient condition for H-stability was found in [3], Theorem 4. However, this condition does not greatly facilitate the determination of H-stability for a given matrix A. Our Theorem 7 below provides an effective test for H-stability. The only candidates are nonsingular A with $\mathfrak{R}(A) \geq 0$, and thus we need merely diagonalize $\mathfrak{R}(A)$ and examine the transform of $\mathfrak{g}(A) = (1/2i) (A - A^*)$.

Theorem 7. Let A be a nonsingular matrix with $\mathfrak{R}(A) \geq 0$, and let $k = \max_{H \geq 0} \delta(AH)$. Let S be any nonsingular matrix for which $S^*AS = A' = P + iQ$, where $P = P_{11} \oplus 0$ and Q are Hermitian, and $P_{11} > 0$. If Q is partitioned conformably with P, then $\text{rank } Q_{22} = k$. In particular, A is H-stable if and only if $Q_{22} = 0$.

Corollary. If A is an H-stable matrix of order n, then $\text{rank } \mathfrak{R}(A) \geq n/2$.

References

University of Wisconsin