NOTE ON Γ^*-SEMIGROUPS

BY TAKAYUKI TAMURA

Communicated by Edwin Hewitt, February 20, 1962

The system $L(S)$ of all nonvoid subsemigroups of a semigroup S is generally a semilattice\(^1\) with respect to the inclusion relation. $L(S)$ is called the subsemigroup semilattice of S. In the previous paper [1] we determined all the Γ-semigroups,\(^2\) i.e., the semigroups whose subsemigroup semilattices are chains. In detail, all the types of Γ-semigroups are

(1.1) cyclic groups $G(p^n)$ of order of prime power,

(1.2) quasi-cyclic groups $G(p^\infty)$,

(1.3) unipotent semigroups generated by d with each of the following defining relations:

- (1.3.1) $d^2 = d^3$,
- (1.3.2) $d^3 = d^4$,
- (1.3.3) $d^2 = d^{p^n+2}$, p prime,
- (1.3.4) $d^3 = d^{p^n+3}$, p prime $\neq 2$.

In the present note, we shall define Γ^*-semigroups as generalizations of Γ-semigroups and shall report the structure of Γ^*-semigroups except for a part of infinite Γ^*-groups. The proof will be omitted here but will be given elsewhere.\(^3\)

DEFINITION. A semigroup S is called a Γ^*-semigroup if every subsemigroup different from S is a Γ-semigroup.

S is a Γ^*-semigroup if and only if $L(S)$ is a semilattice satisfying:

Any subset which contains the greatest element is a subsemilattice. A semilattice of this kind is called a C_0-semilattice. Obviously all the semigroups of order 2 are Γ^*-semigroups, and a homomorphic image of a Γ^*-semigroup is also a Γ^*-semigroup.

Lemma 1. Every element of a Γ^*-semigroup is of finite order, that is, for any element x there is an idempotent e and a positive integer n such that $x^n = e$.

Lemma 2. A Γ^*-semigroup of order > 2 is unipotent. (i.e., an idempotent element is unique).

Generally a unipotent semigroup any element of which is of finite

1 By a semilattice we mean a partially ordered set in which there is a join of two elements.

2 In [1] we called them Γ-monoids.

3 *Semigroups and their subsemigroups semilattices*, to appear.

505
order is determined by a group and a Z-semigroup (i.e., a unipotent semigroup with zero) \[2; 3\]. By Lemmas 1 and 2, we can make the discussion proceed to Γ^*-Z-semigroups, Γ^*-groups, and then to the general cases.

Theorem 1. Any Γ^*-Z-semigroup is of order ≤ 4. All the types of Γ^*-Z-semigroups other than Γ-semigroups are listed as follows:

1. \{0, a, b\} of order 3 where $xy = 0$ for all x, y,
2. \{0, a, b, c\} of order 4 defined as
 - (2.2.1) $b^2 = c^2 = a$ and other products $= 0$.
 - (2.2.2) $b^2 = cb = c^2 = a$ and other products $= 0$.
 - (2.2.3) $b^2 = c^2 = bc = cb = a$, and other products $= 0$.

As far as the Γ^*-groups are concerned, we shall limit ourselves to the case of Γ^*-groups which are properly homomorphic to Γ-groups.

We can prove that any Γ^*-group which is properly homomorphic to a Γ-group has a normal subgroup of index of a prime number. Making use of the theory of finite groups \[4; 5; 6\], we have

Theorem 2. Any Γ^*-group, which is not a Γ-group and is homomorphic to a Γ-group of order > 1, has one of the following types.

1. The groups of order pq where p and q are different primes. There are two types (3.1).
2. The elementary abelian group: $G(p) \times G(p)$.
3. The generalized quaternion group of order 8.

Incidentally a finite Γ^*-group, which is not a Γ-group, is homomorphic to a Γ-group; a commutative Γ^*-group which is not a Γ-group is the direct product of two groups of prime order. Consequently we see that the result of Theorem 2 includes the cases where a Γ^*-group is homomorphic to a nontrivial finite group or a commutative group. However the problem of determination of the remaining case is still open.

Next, let S be a unipotent Γ^*-semigroup which is neither a group nor a Z-semigroup. Then we can prove that S must be finite. The kernel (i.e., the least ideal) of S is of type $G(p^n)$, and the difference semigroup D of S modulo $G(p^n)$, due to Rees \[7\] is a Z-semigroup which has one of the types (1.3.1), (2.1), (2.2.1), (2.2.2), (2.2.3).

Let e be the unique idempotent of S, and let d be a generator of D. $G(p^{n-1})$ will denote the subgroup of order p^{n-1} of $G(p^n)$.

Theorem 3. When $G(p^n)$ is given, we can determine all the unipotent Γ^*-semigroups, non Γ-semigroups, whose kernel is $G(p^n)$, by the product of e and d in the following way.
In the case D of order 2, $S = G(p^n) \cup \{d\}$, $n \neq 0$,

$$ed \in G(p^{n-1}) - G(p^{n-2}).$$

In the case D of order 3, D is of type (2.1) and $S = G(p^n)$ \cup \{d_1, d_2\}$, $n \neq 0$.

- $ed_1 = ed_2 \in G(p^n) - G(p^{n-1})$,
- $p^n \neq 2$, $ed_1 \neq ed_2$; $ed_1, ed_2 \in G(p^n) - G(p^{n-1})$.

In the case D of order 4, $S = G(p^n) \cup \{d_1, d_2, d_3\}$, $d_2^2 = d_3^2 = d_1$, $n \neq 0$, $p \neq 2$.

- D of (2.2.1)
- D of (2.2.2) $ed_2 = ed_3 \in G(p^n) - G(p^{n-1})$.
- D of (2.2.3)

According to the above-mentioned theorems, we see that if S is a finite Γ^*-semigroup, the finite C_0-semilattice $L(S)$ satisfies Jordan-Dedekind condition (or J-condition cf. [8]). Generally a finite C_0-semilattice K satisfying J-condition is called a C_0J-semilattice. Let δ denote the dimension of K (cf. [8]), λ the breadth, i.e., the number of the maximal chains in K, and μ the order, i.e., the number of elements of K.

\[\begin{align*}
\Gamma\text{-Semigroups} & \quad \text{Idempotent Semigroups of order 2} \\
& \quad \text{(2.1), (3.1)} \quad \text{(2.2)}
\end{align*} \]

Theorem 4. A finite C_0J-semilattice K is isomorphic to certain $L(S)$ for some finite Γ^*-semigroup S if and only if δ, λ, and μ satisfy the following conditions.

- (5.1) $\delta + \lambda - \mu = 0$,
- (5.2) $\lambda = \alpha + 1$ where $\alpha = 0$ or 1 or any prime number,

\[A - B \text{ denotes the set of elements of } A \text{ which are not in } B. \]
\[
\begin{align*}
\text{(3.1), (3.2)} & \\
\text{(3.3)} & \\
\text{(4.1), (4.2), (4.3)} & \\
\end{align*}
\]

\[
\begin{align*}
(5.3) & \quad \begin{cases}
\text{if } \lambda = 1 \text{ or } 2, \text{ then } \delta \text{ can be taken as an arbitrary positive integer,} \\
\text{if } \lambda = 3, \text{ then } \delta = 2 \text{ or } 3, \\
\text{if } \lambda = p+1, \ p \text{ being a prime number } > 2, \text{ then } \delta = 2.
\end{cases}
\end{align*}
\]

Finally we shall show the diagrams of \(L(S) \) for a finite \(\Gamma^* \)-semigroup \(S \).

REFERENCES