THE NUMBER OF SOLUTIONS OF A TRINOMIAL CONGRUENCE INVOLVING A kTH POWER AND A SQUARE

BY J. T. CROSS

Communicated by G. B. Huff, September 28, 1962

Let K denote a finite extension of the rational number field and D the domain of algebraic integers of K. Let P be a prime ideal of D having norm $N(P) = p^h = q$, where h is a positive integer and p is an odd rational prime number. This announcement is concerned with the number of solutions of the trinomial congruence,

$$ X^k + aY^2 \equiv \rho \pmod{P^r}, $$

where a and ρ are in D with ρ arbitrary and $(a, P) = 1$, r is a positive integer, k is a positive integer such that $(k, p) = 1$, and $d = (k, q - 1) > 1$. Let C denote an ideal of D such that $(P, C) = 1$ and $PC = (\theta)$ is principal, and let b be the greatest integer n such that $0 \leq n \leq r$ and $P^n | \rho$. Then we may put

$$ \rho \equiv \eta^b \pmod{P^r}, \quad (\eta, P) = 1, $$

where η is uniquely determined $(\pmod{P^{r-b}})$ if $b < r$.

In Theorems 1–8 we give formulas for the number $Q_r(\rho)$ of solutions of (1). Solvability criteria are obtained as corollaries of these theorems. (We remark that if $\rho \equiv 0 \pmod{P^r}$, then (1) has the trivial solution $(0, 0)$.) The formulas given in this note follow directly from more general theorems proved for congruences $(\pmod{P^r})$ involving a kth power and an arbitrary number of squares [2].

If $r = 1$, the congruence (1) amounts to an equation in a Galois field of order q. For discussions of general trinomial congruences in a finite field, particular reference is made to Vandiver [7] who has published several pertinent papers in recent years. A number of authors have considered the special case of (1) with $r = 1$ and K the rational field; in particular we mention Frattini [3], E. Lehmer [5], and Manin [6]. For a discussion of trinomial congruences in algebraic number fields, see Cohen’s paper [1].

We need the following notation:

$$ b = Lk + I \quad (0 \leq I < k); \quad \xi = (-a/P), \quad \tau = (-\eta/P), $$

where (β/P) denotes the Legendre symbol in D.

Let $Q(\eta) = Q_i(\eta)$ denote the number of solutions of

$$ X^k + aY^2 \equiv \eta \pmod{P}, \quad (\eta, P) = 1. $$

83
Theorems 1–4 and 7–8 below contain explicit formulas for the number of solutions of (1), while Theorems 5 and 6 are reduction formulas which give the number of solutions of (1) in terms of the number of solutions of (4). Theorems 5 and 6 apply if $d > 2$, $\rho \not\equiv 0 \pmod{P}$, $b \equiv 0 \pmod{k}$, and bk is even; under these conditions it is not possible to give explicit formulas for $Q_r(p)$. Davenport and Hasse [4] have shown that $Q(\eta) \geq q - (d - 1)\sqrt{q}$, a result which we utilize in Corollary 7.

Theorem 1. If k is odd and $r > b \not\equiv 0 \pmod{k}$, then $Q_r(p)(q^{k-2}-1)/q^{r-1} = (q-1)(q^{(k/2-1)L+k-2}-1)$ for L even, I odd or for L even, I even, $\tau_{r} = -1$; $(q-1)(q^{(k/2-1)L+k-2}-1) + 2(q^{k-2}-1)q^{(k/2-1)L+1/2}$ for L even, I even, $\tau_{r} = 1$; $(q-1)(q^{(k/2-1)(L+1)}-1)$ for L odd, I even, or for L odd, I odd, $\tau_{r} = -1$; $(q-1)(q^{(k/2-1)(L+1)}-1) + 2(q^{k-2}-1)q^{(k/2-1)L+1/2}$ for L odd, I odd, $\tau_{r} = 1$.

Corollary 1. If k is odd and $b \not\equiv 0 \pmod{k}$, then (1) is solvable.

Theorem 2. If $k = 2$ and $r > b \not\equiv 0 \pmod{2}$, then $Q_r(p)/q^{r-1} = 0$ for $\xi = -1; 2(q-1)(L+1)$ for $\xi = 1$. If k is even, $k > 2$, and $r > b \not\equiv 0 \pmod{k}$, then $Q_r(p)(q^{k/2-1}-1)/q^{r-1} = 0$ for I odd, $\xi = -1$, or for I even, $\xi = 1 = -\tau; 2(q-1)(q^{(k/2-1)(L+1)}-1)$ for I odd, $\xi = 1$, or for I even, $\xi = 1 = -\tau; 2q^{(k/2-1)L+1/2}(q^{k/2-1}-1)$ for I even, $\xi = -1 = \tau; 2(q-1)(q^{(k/2-1)(L+1)}-1) + 2q^{(k/2-1)L+1/2}(q^{k/2-1}-1)$ for I even, $\xi = 1 = \tau$.

Corollary 2. If k is even and $r > b \not\equiv 0 \pmod{k}$, then (a) If I is odd, the congruence (1) is insolvable $\equiv 2\xi = -1$.
(b) If I is even, the congruence (1) is insolvable $\equiv 2\xi = 1 = -\tau$.

Theorem 3. If $k = 2$ and $r > b \equiv 0 \pmod{2}$, then $Q_r(p)/q^{r-1} = (q-1)(1 + 2L)$ for $\xi = 1; q + 1$ for $\xi = -1$. If $d = 2 < k$ and $r > b \equiv 0 \pmod{k}$, then

$Q_r(p)(q^{k/2-1}-1)/q^{r-1} = (q-1)(q^{(k/2-1)(L+1)} + q^{(k/2-1)L} - 2)$

for $\xi = 1; (q+1)q^{(k/2-1)L}(q^{k/2-1}-1)$ for $\xi = -1$.

Corollary 3. If $d = 2$ and $b \equiv 0 \pmod{k}$, then (1) is solvable.

Theorem 4. If k is odd, b is odd and $r > b \equiv 0 \pmod{k}$, then $Q_r(p)(q^{k-2}-1)/q^{r-1} = (q-1)(q^{(k/2-1)(L+1)}-1)$ for η not a kth power (mod P); $(q-1)(q^{(k/2-1)(L+1)}-1) + dq^{(k/2-1)L+1/2}(q^{k-2}-1)$ for η a kth power (mod P).

Corollary 4. If k is odd, b is odd, and $b \equiv 0 \pmod{k}$, then (1) is solvable.
THEOREM 5. If k is even, $d > 2$, and $r > b \equiv 0 \pmod{k}$, then $Q_r(p)/q^{r-1} = q^{(k/2-1)L}Q(\eta)$ for $\xi = -1$ and

$$Q_r(p)(q^{k/2-1} - 1)/q^{r-1} = q^{(k/2-1)L}\left\{q^{k/2} + q - 2 + (Q(\eta) - q)(q^{k/2-1} - 1)\right\} - 2(q - 1)$$

for $\xi = 1$.

COROLLARY 5. If k is even, $d > 2$, and $r > b \equiv 0 \pmod{k}$, then

(a) If $\xi = -1$, $Q_r(p) = 0 \Leftrightarrow Q(\eta) = 0$.

(b) If $\xi = 1$, $Q_r(p) = 0 \Leftrightarrow Q(\eta) = 0$ and $L = 0$.

THEOREM 6. If k is odd, b is even and $r > b \equiv 0 \pmod{k}$, then

$$Q_r(p)(q^{k/2-1} - 1)/q^{r-1} = 1 - q + q^{(k/2-1)L}\left\{q^{k/2} + q - 2 + (Q(\eta) - q)(q^{k/2-1} - 1)\right\}.$$

COROLLARY 6. If k is odd, b is even, and $r > b \equiv 0 \pmod{k}$, then $Q_r(p) = 0 \Leftrightarrow Q(\eta) = 0$ and $L = 0$.

Since $Q(\eta) \geq q - (d - 1)\sqrt{q}$, one obtains from Corollaries 5 and 6,

COROLLARY 7. If $d > 2$, bk is even, and $r > b \equiv 0 \pmod{k}$, then (1) is solvable if $q > (d - 1)^2$; moreover, (1) is solvable for arbitrary q if $L \neq 0$ and k is odd, or if $L \neq 0$ and $\xi = 1$.

For completeness, the following formulas in the case $b = r$ ($\rho \equiv 0 \pmod{P'}$) are also included.

THEOREM 7. If $k = 2$ and $b = r$, then $Q_r(p)/q^{r-1} = q + (q - 1)r$ for $\xi = 1$; q for $\xi = -1$, r even; 1 for $\xi = -1$, r odd. If k is even, $k > 2$ and $b = r$, then $Q_r(p)/q^{r-1} = q^{(k/2-1)L+1}$ for $I = 0$, $\xi = -1$;

$$q^{(k/2-1)L+I/2} for I even, I > 0, \xi = -1; q^{(k/2-1)L+(I-1)/2} for I odd, \xi = -1;$$

$$\left\{q^{(k/2-1)L}(q^{k/2} + q - 2) - 2(q - 1)\right\}/(q^{k/2-1} - 1) for I = 0, \xi = 1;$$

$$q^{(k/2-1)L+I/2} for I even, I > 0, \xi = -1; q^{(k/2-1)L+(I-1)/2} for I odd, \xi = -1;$$

$$\left\{q^{(k/2-1)L}(q^{k/2} + q - 2) - 2(q - 1)\right\}/(q^{k/2-1} - 1) + q^{(k/2-1)L}(q^{k/2} + q - 2) - 2(q - 1)\} / (q^{k/2-1} - 1)$$

for I even, $\xi = 1$; $\left\{q^{(k/2-1)L}(q^{k/2} + q - 2) - 2(q - 1)\} / (q^{k/2-1} - 1)$ for I odd, $\xi = 1$.

THEOREM 8. If k is odd and $b = r$, then

$$Q_r(p)/q^{r-1} = \left\{q^{(k/2-1)L}(q^{k-1} - 1) - q + 1\right\}/(q^{k-2} - 1)$$

$$+ q^{(k/2-1)L}(q^{k/2} - 1) for L even, I even;$$

$$\left\{q^{(k/2-1)L}(q^{k-1} - 1) - q + 1\right\}/(q^{k-2} - 1) + q^{(k/2-1)L}(q^{(I-1)/2} - 1) for L even, I odd;$$

$$\left\{q^{(k/2-1)L}(q^{k/2} + q^{k/2} - q^{k/2-1} - q^{k/2}) - q + 1\right\}/(q^{k-2} - 1) for L odd, I = 0;$$
\[\{ q^{(k/2-1)I} (q^{k/2-1} + q^{k/2} - q^{k/2-1} - q^{1/2}) - q + 1 \} / (q^{k-2} - 1) \]
\[+ q^{(k/2-1)L+1/2} (q^{I/2-1} - 1) \text{ for } L \text{ odd, } I \text{ even, } I > 0; \]
\[\{ q^{(k/2-1)I} (q^{k/2-1} + q^{k/2} - q^{k/2-1} - q^{1/2}) - q + 1 \} / (q^{k-2} - 1) \]
\[+ q^{(k/2-1)L+1/2} (q^{I(2-1)/2} - 1) \text{ for } L \text{ odd, } I \text{ odd.} \]

We now apply the formulas to a few examples, letting \(K \) be the rational field. \(X^3 + Y^2 \equiv 2 \cdot 7^3 \pmod{7^4} \) has 2,058 solutions by Theorem 4; \(X^4 + 2Y^2 \equiv 25 \pmod{125} \) has no solutions by Corollary 2; \(X^4 + Y^2 \equiv 3 \cdot 5^4 \pmod{5^6} \) has 5,000 solutions by Theorem 5; \(X^6 + Y^2 \equiv 6 \cdot 7^6 \pmod{7^7} \) has no solutions by Corollary 5.

BIBLIOGRAPHY

5. Emma Lehmer, *On the number of solutions of \(u^h+D=v^2 \pmod{p} \)*, Pacific J. Math. 5 (1955), 103–118.

THE UNIVERSITY OF TENNESSEE AND

THE UNIVERSITY OF THE SOUTH