Stable homeomorphisms can be approximated by piecewise linear ones

Author:
E. H. Connell

Journal:
Bull. Amer. Math. Soc. **69** (1963), 87-90

DOI:
https://doi.org/10.1090/S0002-9904-1963-10871-X

MathSciNet review:
0149459

Full-text PDF Free Access

References | Additional Information

**1.**R. D. Anderson,*The algebraic simplicity of certain groups of homeomorphisms*, Amer. J. Math. 80 (1958), 955-963. MR**98145****2.**R. H. Bing,*An alternate proof that 3-manifolds can be triangulated*, Ann. of Math. (2) 69 (1959), 37-65. MR**100841****3.**M. Brown and H. Gluck,*Stable structures on manifolds*. I.*Homeomorphisms of S*, Ann. of Math. (to appear). MR**145497****4.**G. M. Fisher,*On the group of all homeomorphisms of a manifold*, Trans. Amer. Math. Soc. 97 (1960), 193-212. MR**117712****5.**J. Milnor,*On the relationship between differentiable manifolds and combinatorial manifolds*, mimeographed notes, Princeton University, Princeton, N. J., 1956.**6.**E. E. Moise,*Affine structures in 3-manifolds*. IV.*Piecewise linear approximations of homeomorphisms*, Ann. of Math. (2) 55 (1952), 215-222. MR**46644****7.**J. Munkres,*Obstructions to the smoothing of piecewise-differentiable homeomorphisms*, Ann. of Math. (2) 72 (1960), 521-554. MR**121804****8.**R. Penrose, J. H. C. Whitehead and E. C. Zeeman,*Imbedding of manifolds in Euclidean space*, Ann. of Math. (2) 73 (1961), 613-623. MR**124909****9.**J. Stallings,*Polyhedral homotopy spheres*, Bull. Amer. Math. Soc. 66 (1960), 485-488. MR**124905****10.**J. Stallings,*The piecewise-linear structure of euclidean space*, Proc. Cambridge Philos. Soc. 58 (1962), 481-488. MR**149457****11.**J. Stallings,*On topologically unknotted spheres*, Ann. of Math. (to appear). MR**149458****12.**J. H. C. Whitehead,*Simplicial spaces, nuclei and m-groups*, Proc. London Math. Soc. 45 (1939), 243-327.**13.**J. H. C. Whitehead,*On C1-complexes*, Ann. of Math. (2) 41 (1940), 809-824. MR**2545****14.**M. K. Fort,*Topology of 3-manifolds*, Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 198-204.

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1963-10871-X