UNKNOTTING S^1 IN S^4

BY HERMAN GLUCK

Communicated by Deane Montgomery, August 6, 1962

Topologists have for some time suspected that the k-sphere S^k can be topologically knotted in the n-sphere S^n if and only if $k > 0$ and $n - k = 2$. Strictly speaking, this is not quite correct (because of the existence of wild embeddings), but with the appropriate local flatness condition, the conjecture has been verified by Brown [1; 2] for $n - k = 1$, Artin [3] for $n - k = 2$, and Stallings [4] for $n - k \geq 3$, the single undecided case occurring when $k = 1$ and $n = 4$.

It is the object of this note to show that, on the basis of some recent results of Homma, S^1 cannot be knotted in S^4.

1. The main theorem. R^n will denote n-dimensional Euclidean space, and we identify R^n with $R^n \times 0 \subseteq R^{n+1}$ so that we may write $R^n \subseteq R^{n+1}$. The unit sphere in R^{n+1} will be denoted by S^n. S^n can be triangulated as a combinatorial manifold so that, for each $k < n$, S^k appears as a subcomplex.

Let f be an embedding of a k-manifold M^k in an n-manifold M^n with the property that each point of $f(M^k)$ has a neighborhood U in M^n such that the pair $(U, U \cap f(M^k))$ is homeomorphic to the pair (R^n, R^k). Then f is called a locally flat embedding and $f(M^k)$ is called a locally flat submanifold of M^n.

The main theorem of this paper will be

Theorem 1.1. Let f_1 and f_2 be locally flat embeddings of S^1 in S^4. Then there is a homeomorphism h of S^4 onto itself such that

$$h f_1 = f_2.$$

Furthermore, if p is a point of $S^4 - f_1(S^1) - f_2(S^1)$, then h can be chosen so as to restrict to the identity in some neighborhood of p.

Since a general position argument will prove Theorem 1.1 whenever f_1 and f_2 happen to be piecewise linear embeddings, it will be more than sufficient to prove the following theorem, in which $U_{\epsilon}(f(S^1))$ denotes the set of points in S^4 whose distance from $f(S^1)$ is less than ϵ.

Theorem 1.2. Let f be a locally flat embedding of S^1 in S^4. Then for any $\epsilon > 0$, there is an ϵ-homeomorphism h of S^4 onto itself such that

$$h(S^4) - U_{\epsilon}(f(S^1)) = 1,$$

$$h f : S^1 \to S^4$$

is piecewise linear.
2. Homma's results. Homma [5] has recently proved the following theorem.

Homma's Theorem. Let the following be given:
(i) \(M^n \), a finite combinatorial \(n \)-manifold;
(ii) \(\overline{M}^n \), a finite combinatorial \(n \)-manifold topologically embedded in \(M^n \);
(iii) \(P^k \), a finite polyhedron piecewise linearly embedded in \(\text{int}(M^n) \).

If \(2k + 2 \leq n \), then for any \(\epsilon > 0 \) there is an \(\epsilon \)-homeomorphism \(F \) of \(M^n \) onto \(\overline{M}^n \) such that
\[
F/M^n - U_\epsilon(P^k) = 1,
F/P^k \text{ is piecewise linear.}
\]

With only slight modifications, Homma's arguments are sufficient to produce the following somewhat more general result.

Theorem 2.1. Let the following be given:
(i) \(M^n \), a possibly noncompact combinatorial \(n \)-manifold;
(ii) \(\overline{M}^n \), a possibly noncompact combinatorial \(n \)-manifold, topologically embedded in \(M^n \);
(iii) \(P^k \), a possibly infinite polyhedron, piecewise linearly embedded as a closed subset of \(\text{int}(M^n) \);
(iv) \(\tilde{L} \), a subpolyhedron of \(P^k \) such that \(\text{Cl}(P^k - \tilde{L}) \) is a finite polyhedron, and such that \(\tilde{L} \) is piecewise linearly embedded in \(M^n \) as well as in \(\overline{M}^n \).

If \(2k + 2 \leq n \), then for any \(\epsilon > 0 \) there is an \(\epsilon \)-homeomorphism \(F \) of \(M^n \) onto \(\overline{M}^n \) such that
\[
F/M^n - U_\epsilon(P^k - \tilde{L}) = 1,
F/\tilde{L} = 1,
F/P^k \text{ is piecewise linear.}
\]

3. Proof of the main theorem

Lemma 3.1. Let \(\alpha \) be an open arc in \(S^4 \), and \(u,v,w,x \) four points on \(\alpha \), in that order. Let \(U \) and \(V \) be open neighborhoods in \(S^4 \) of the closed subarcs \([uw] \) and \([vx] \), respectively, of \(\alpha \), such that \((U, U \cap \alpha) \approx (R^4, R^3) \) \(= (V, V \cap \alpha) \). Then there is an open neighborhood \(W \) of \([ux] \) in \(S^4 \) such that \((W, W \cap \alpha) \approx (R^4, R^3) \).

Since \((U, U \cap \alpha) \approx (R^4, R^3) \), there is a homeomorphism \(h \) of \(U \) onto itself which takes \(U \cap \alpha \) onto itself, \(u \) onto \(v \) and \(w \) onto itself, and is the identity near the boundary of \(U \). Extend \(h \) over \(S^4 \) via the identity, and let \(W = h^{-1}(V) \).

Repeated use of this lemma proves the following
Theorem 3.2. Let S be a locally flat 1-sphere in S^4. Then S may be written as the union of two open arcs, A and B, which have neighborhoods, U_A and U_B, in S^4 such that

(i) $U_A \cap S = A$ and $(U_A, A) \approx (R^4, R^4)$;
(ii) $U_B \cap S = B$ and $(U_B, B) \approx (R^4, R^4)$.

Now let f be a locally flat embedding of S^1 in S^4, and $\epsilon > 0$ a given positive number. Theorem 1.2 will be proved by a double application of Homma's theorem, first in its original form and then in the form of Theorem 2.1.

Proof of Theorem 1.2. Write $f(S^1)$ as the union of two open arcs A and B as in the above theorem, and let x and y be two points of $f(S^1)$, one chosen from each of the two components of $A \cap B$. Then $f(S^1)$ is the union of the two closed arcs $a \subset A$ and $b \subset B$, which intersect at x and y.

Step 1. Since $(U_A, A) \approx (R^4, R^4)$, U_A can be triangulated as a combinatorial manifold in such a way as to make

$$f: f^{-1}(a) \to a \subset U_A$$

a piecewise linear embedding.

Let $M^n = S^4$, $\tilde{M}^n = M^n$, a a closed regular neighborhood of a in U_A, and $\tilde{P}^k = a$. Homma's theorem then asserts the existence of an $\epsilon/2$-homeomorphism F_1 of S^4 onto itself such that

$$F_1/S^4 \subset U_{\epsilon/2}(a),$$
$$F_1/a$$

is piecewise linear.

Step 2. Since $(F_1(U_B), F_1(B)) \approx (U_B, B) \approx (R^4, R^4)$, $F_1(U_B)$ can be triangulated as a combinatorial manifold in such a way as to make

$$F_1f: f^{-1}(B) \to F_1(B) \subset F_1(U_B)$$

a piecewise linear embedding.

For the second application of Homma's theorem, let $M^n = F_1(U_B)$ triangulated as an open subset of S^4, $\tilde{M}^n = F_1(U_B)$ triangulated as in the preceding paragraph, $\tilde{P}^k = F_1(B)$ and $\tilde{L} = F_1(B) \cap F_1(a)$. Note that by choice of F_1, \tilde{L} is piecewise linearly embedded in M^n as well as in \tilde{M}^n. Now apply Theorem 2.1 to obtain an $\epsilon/2$-homeomorphism F_2 of $F_1(U_B)$ onto itself such that

$$F_2/F_1(U_B) \subset U_{\epsilon/2}(F_1(B) - F_1(a)) = 1,$$
$$F_2/F_1(B) \cap F_1(a) = 1,$$
$$F_2/F_1(B)$$

is piecewise linear.

F_2, which is the identity near the boundary of $F_1(U_B)$, may be ex-
tended via the identity to a homeomorphism F_2 of S^4 onto itself.
Then $h = F_2 F_1$ is an ϵ-homeomorphism of S^4 onto itself such that

$$h/S^4 - U_\epsilon(f(S^4)) = 1,$$

$h: S^1 \to S^3$ is piecewise linear.

This completes the proof of Theorem 1.2, and hence also of Theorem 1.1.

Theorem 1.2 is actually a very special case of a more general result
which will be described elsewhere.

References

The Institute for Advanced Study