DIFFERENTIAL INEQUALITIES

BY RAYMOND M. REDHEFFER

Communicated by Lipman Bers, August 14, 1962

Let B denote a bounded region in Euclidean n-space, with boundary ∂B and closure \overline{B}. We write $P = x = (x_1, x_2, \ldots, x_n) \in \overline{B}$, $u_i = \partial u/\partial x_i$, $u_{ij} = \partial^2 u/\partial x_i \partial x_j$, and similarly for v, c and y. The normal derivative u_ν is understood in the sense of Walter, namely:

$$u_\nu(P_0) = \limsup [u(P_k) - u(P_0)] |P_k - P_0|^{-1}$$

where $P_k \subseteq B$, $P_0 \subseteq \partial B$, and $P_k \to P_0$ in such a way that

$$(P_k - P_0) \cdot P_0$$

tends to a fixed vector, v. We have $u = u(x)$, $v = v(x)$, and Independent variables are denoted by the letter s. The letter ϵ means "+" or "−," and has the same meaning in hypothesis and conclusion. We suppose $\epsilon \neq 0$ and $\delta \neq 0$ to be nonnegative constants. The statement "$f(x, v, v_i, v_{ij})$ is monotone" means that

$$\epsilon |f(x, v, v_i, v_{ij}) - f(x, v, v_0, s_{ij})| \geq 0$$

when the matrix $\epsilon [v_{ij} - (s_{ij})]$ is nonnegative. Other assertions of monotony are interpreted similarly. We assume $u \in C^{(2)}$, $v \in C^{(2)}$ in B and $u \in C$, $v \in C$ in \overline{B}, although discontinuities can be allowed as in [2].

It is convenient to write $v' = (v, v_i, v_{ij})$, a vector of $1 + n + n^2$ components, and similarly for u, s, and y. Also $f' = (f_u, f_{ui}, f_{uij})$ with argument (x, v') or (x, s'), as the case may be. Similarly, $k' = (k_u, k_{u})$. The statement "f' is continuous in the neighborhood of v'" means that there is an $h > 0$ such that $f'(x, s')$ is continuous for $|s' - v'| < h$. Other statements of this kind are understood similarly.

THEOREM I. Let $k(x, u \downarrow, u_\nu)$ be strictly monotone, let $k(x, v, v_\uparrow)$ be monotone, and let f' be continuous in the neighborhood of v. Suppose further:

(i) $f(x, u \downarrow, u_i, u_{ij})$ is monotone, and $f(x, s, s_i, s_{ij} \uparrow)$ is monotone in the neighborhood of v.

1 Fulbright Research Scholar at the University of Hamburg.
(ii) To every compact subset $S \subset B$ corresponds a function $c(x) \in C^2$ such that

$$\sum f_{ij}(x, v') c_i + \sum f_{ij}(x, v') c_{ij} > 0$$

at those points of S (if there are any) at which

$$f_v(x, v') = \sum f_{ij}(x, v') c_i c_{ij} = 0.$$

Then $p(Tu - Tv) \leq 0$ and $p(Ru - Rw) \leq 0 \Rightarrow p(u - v) \leq 0.$

To prove the theorem let $y \in C$, $y_0 \in C$, and suppose the conclusion violated. For small $h > 0$ the function $w = p(u - v) - hy$ has an interior maximum and at that point $w_0 = p(u - v) - hy_0 > 0$. We choose $y = -\mu \{c(x)\}$ for a suitable function μ, and $y_0 = -f_v(x, v')$.

Let $2c(x) = r^2 r_0 - r_0$ where r is the distance to a fixed point P_0 and where r_0 is constant. The unit normal, v, to the sphere $r = |r_0|$ is $v = e_i$. A point P is called a sphere-point (r_0, v) of the set $u = v$ if P is on the sphere $r = |r_0|$, if $u = v$ at P, and if there is a neighborhood N of P such that $p(u - v) < 0$ in those points of N at which $c(x) > 0$.

Thus, when $r_0 > 0$ the set $u = v$ lies locally inside a sphere of radius r_0 and outer normal v, whereas if $r_0 < 0$ the set lies locally outside a sphere of radius $|r_0|$ and inner normal v. The following result affords a smooth transition from the weak to the strong maximum principle:

Theorem II. Let f' be continuous in the neighborhood of v, let $f(x, s, s_i, s_{ij})$ be monotone in the neighborhood of v, and suppose further:

(i) At the point $P \in B$, either

$$\sum v_{ij} f_{ij}(x, v') + r_0^{-1} \sum f_{ij}(x, v') > 0$$

or

$$\sum f_{ij}(x, v') v_i v_j > 0.$$

(ii) In a neighborhood of P, $p(Tu - Tv) \leq 0$.

Conclusion: P is not a sphere-point (r_0, v) of the set $u = v$.

The Fréchet derivative is

$$\lim_{h \to 0} (T(s + hy) - T(s)) h^{-1} = -f'(x, s) \cdot y' = L(s)y$$

where $L(s)$ is, for each s, a linear operator on y. Similarly,

$$\lim_{h \to 0} (R(s + hy) - R(s)) h^{-1} = M(s)y$$

where $M(s)$ is linear. We say that the pair of operators (L, M) be-
longs to the class \((E, D, A)\) if \(E, D, A\) are positive constants such that the problem

\[
Ly \geq E, \quad x \in B; \quad My \geq D, \quad x \in \partial B
\]

has a solution \(y \in C^{(2)}, \quad 0 \leq y \leq 1, \quad \|y_i\| + \|y_{ij}\| \leq A.\)

Theorem III. Let \(f'(x, s')\) and \(k'(x, s', s_i)\) be uniformly equicontinuous in \(s\) and let \(\sup |f_v(x, v')| < \infty, \sup |k_v(x, v, v_i)| < \infty.\) Suppose further for all \(s:\)

(i) The matrix \([f_{ij}(x, u, u_i, u_{ij})]\) \(\geq 0,\) and \(k_{iv}(x, u, s_i) \geq 0.\)

(ii) \([L(s), M(s)] \in (E, D, A).\)

Conclusion: \(p(Tu - Tv) \leq \varepsilon_p\) and \(p(Ru - Rv) \leq \delta_p \Rightarrow p(u - v) \leq \max ((\varepsilon_p/E), (\delta_p/D)).\)

The proof follows by constructing a suitable family of solutions \(y(x, \xi)\) of

\[
p[T(v + py) - Tv] > \varepsilon_p, \quad p[R(v + py) - Rv] > \delta_p,
\]

and using the fundamental theorem of Nagumo [3].

Let \(c(x) \in C^{(2)}\) be a fixed function with \(\inf c(x) = 0, \sup \|c_i(x)\| = 1.\) The constants \(C = \sup c(x), \quad C_2 = \sup \|c_{ij}(x)\|\) measure the size of \(B\) with respect to \(c.\) The function

\[
U(p, \beta) = \inf p[f(x, u, u_i, u_{ij} + \rho c_i + \rho \beta c_{ij}) - f(x, u, u_i, u_{ij})]
\]

for \(\alpha \geq 0, \beta \geq 0\) measures the influence of the second-derivative terms in \(f.\) We write \(V\) instead of \(U\) when \(v(x)\) instead of \(u(x)\) occurs on the right. The influence of the first-derivative terms is expressed by

\[
p[f(x, u, u_i, s_{ij}) - f(x, v, v_i, s_{ij})] \leq G_p(S_2, \|u_i - v_i\|) \quad \text{for} \quad p(u - v) > 0
\]

where \(S_2 = \sup \|s_{ij}\|,\) and where \(G_p\) is continuous and monotone in both arguments. For simplicity let

\[
Ru = u - k(x, u), \quad k(x, v_i + s) - k(x, v_i) \leq \gamma(\|s\|)
\]

where \(\gamma\) is continuous and increasing. Under these conditions we have:

Theorem IV. Let \(f(x, u, u_i, s_{ij})\) and \(k(x, u, s_i)\) be monotone and suppose that \(\eta(s),\) for \(0 < s < C,\) is a positive nondecreasing solution of the differential inequality

\[
U_p(\eta, \eta') > \varepsilon_p + G_p(V_2, \eta), \quad V_2 = \sup \|v_{ij}\|,
\]

or of the inequality

\[
V^{-p}(\eta, \eta') > \varepsilon_p + G_p(V_2 + \eta' + \eta C_2, \eta).
\]

Then \(p(Tu - Tv) \leq \varepsilon_p\) and \(p(Ru - Rv) \leq \delta_p\) implies
\[p(u - v) \leq \delta^p + \gamma[\eta(C)] + \int_{c(x)}^C \eta(s) \, ds. \]

The proof follows by setting \(\mu'(s) = \eta(s) \), \(\gamma = m - \mu[c(x)] \), where \(m \) is a constant so chosen that the function \(p(u - v) - \gamma \) does not assume a positive maximum on \(\partial B \).

BIBLIOGRAPHY

UNIVERSITY OF HAMBURG

COMPLETE LOCALLY AFFINE SPACES AND ALGEBRAIC HULLS OF MATRIX GROUPS

BY LOUIS AUSLANDER

Communicated by I. M. Singer, November 27, 1962

Let \(M \) be a complete Riemann manifold with curvature and torsion zero. If \(\pi_1(M) \) denotes the fundamental group of \(M \), then Bieberbach [3; 4] proved that \(\pi_1(M) \) contains an abelian normal subgroup of finite index. Moreover, if \(M \) is compact then \(M \) is covered by a torus.

In recent years the study of general affine connections has led to the study of the following problem: How can one classify the manifolds which possess a complete affine connection with curvature and torsion zero? Such manifolds will be called complete locally affine spaces.

It was Zassenhaus [6] who first gave a general setting to the Bieberbach theorem. He showed a special case of the following theorem:

Theorem 1. Let \(G \) be a connected Lie group with its radical \(R \) simply connected, \(\rho: G \to G/R \) the projection, and \(L \) a closed subgroup of \(G \). If the identity component \(L_0 \) of \(L \) is solvable, then the identity component of the closure of \(\pi_1(L) \) is solvable.

This theorem in this generality is due to H. C. Wang [5] and his

1 With partial support from the N. S. F.