A TOPOLOGICAL CLASSIFICATION OF CERTAIN 3-MANIFOLDS

BY LEE NEUWIRTH

Communicated by Deane Montgomery, December 12, 1962

Introduction. In [1] J. Stallings proves that members of the class of closed irreducible 3-manifolds which are fibered over a circle by an aspherical 2-manifold may be distinguished from other closed irreducible 3-manifolds by their fundamental group alone.

He asks whether two members of this class of 3-manifolds are homeomorphic if they have isomorphic fundamental groups. This question is answered in the affirmative here, thus giving a classification of these manifolds according to their fundamental group.

The closed case. Let us denote by \(\mathcal{M} \) the class of all 3-manifolds satisfying the following conditions:

(a) Manifolds of \(\mathcal{M} \) are irreducible (every 2-sphere bounds a 3-cell).

(b) Manifolds of \(\mathcal{M} \) are closed.

(c) Manifolds of \(\mathcal{M} \) have fundamental groups which contain a finitely generated normal subgroup of order \(>2 \), with quotient group an infinite cyclic group.

Theorem 1. Let \(M_2 \) be any closed irreducible 3-manifold. Let \(M_1 \) belong to \(\mathcal{M} \), then \(M_1 \) is homeomorphic to \(M_2 \) if and only if \(\pi_1(M_1) \) is isomorphic to \(\pi_1(M_2) \).

Proof. One direction is trivial. By Stallings' theorem [1] \(M_1 \) admits a fibering over \(S^1 \), with fiber a closed 2-manifold \(T_1 \). Let

\[
1 \rightarrow H_1 \rightarrow G_1 \rightarrow Z \rightarrow 0
\]

denote the sequence of fundamental groups of \(T_1, M_1, S^1 \), respectively corresponding to this fibering. Let \(\rho^* \) denote the assumed isomorphism from \(\pi_1(M_1) = G_1 \) to \(\pi_1(M_2) = G_2 \). Then \(\rho^* \) induces

\[
1 \rightarrow H_2 \rightarrow G_2 \rightarrow Z \rightarrow 0.
\]

Now, \(G_1 \) and \(G_2 \) are both described by giving the automorphisms \(\phi^*_1, \phi^*_2 \) of \(H_1, H_2 \), which are induced by a generator of \(Z \), pulled back to \(G_1, G_2 \), and then acting on \(H_1, H_2 \) by conjugation.

Since \(\rho^* \) is an isomorphism we may assume

\[
\rho^* \phi^*_1 = \phi^*_2 (\rho^* | H_1). \tag{3}
\]

372
According to Stallings theorem [1] there is a fibering of M_2 which induces (2). Denote by T_2 the fiber of this map. Cut M_1, M_2, along a fiber, obtaining $T_1 \times I$, $T_2 \times I$. Denote by $\phi_i: T_i \times 0 \to T_i \times 1$ the maps which repair these cuts. Clearly ϕ_i induces ϕ_i^* modulo an inner automorphism of H_i.

Now if a homeomorphism $\rho: T_1 \times I \to T_2 \times I$ can be found satisfying
\[(4) \quad \phi_2(\rho| T_1 \times 0) = \rho \phi_1,\]
then ρ defines a homeomorphism from M_1 to M_2.

An algebraic map ρ^* from $\pi_1(T_1)$ to $\pi_1(T_2)$ is already defined, so according to a theorem of Nielson [2], and Mangler [4], there exists a homeomorphism $\rho_1: T_1 \to T_2$ such that $\rho_1^* = \rho^*$. Now\(^1\) $(\rho_1 \phi_1)^* = (\phi_2(\rho_1| T_1 \times 0))^*$. According to a theorem of Baer [3] (for orientable surfaces) and Mangler [4] (for orientable and nonorientable surfaces), the maps $\rho_1 \phi_1$ and $\phi_2(\rho_1| T_1 \times 0)$ differ by an isotopy of T_2. Let us call this isotopy h_t. Then $h_0 \circ \rho_1 \circ \phi_1 = \rho_1 \circ \phi_1, \quad h_1 \circ \rho_1 \circ \phi_1 = \phi_2(\rho_1| T_1 \times 0)$. Define $\rho: T_1 \times I \to T_2 \times I$ as follows:
\[\rho(x, t) = (ht\rho_1, t)\]
then
\[\rho(x, 1) = (h_1\rho_1, 1)\]
\[\rho(x, 0) = (h_0\rho_1, 0) = (\rho_1, 0).\]

So that
\[\rho \phi_1 = h_1\rho_1 \phi_1 = \phi_2(\rho_1| T_1 \times 0)\]
but
\[\phi_2(\rho| T_1 \times 0) = \phi_2(h_0\rho_1| T_1 \times 0)\]
\[= \phi_2(\rho_1| T_1 \times 0)\]
and so (4) is satisfied and the theorem is proved.

The compact case. As far as the compact nonclosed case is concerned a somewhat different approach may be adopted.

Suppose M_1 is a compact, orientable, irreducible, 3-manifold, and $\pi_1(M_1) = G_1$ contains a normal subgroup H_1 such that:
(a) H_1 is finitely generated.
(b) $G_1/H_1 \approx \mathbb{Z}$.
(c) $H_1 \approx \mathbb{Z}_2$.\(^2\)

Having already investigated the case $\partial M_1 = \phi$, we may assume $\partial M_1 \neq \phi$. According to Stallings theorem [1] M_1 is fibered over S^1 with fiber a 2-manifold S_1. Since M_1 is orientable this fibering implies

\(^1\) Modulo an inner automorphism.
\(^2\) This constitutes part of the hypothesis of Theorem 2.
each boundary component of M_1 is a torus. Denote by T_1, \ldots, T_n these boundary tori. Since each boundary torus has a fibering induced in it, we may select curves m_i, l_i in each T_i such that m_i covers S^1 once under the projection of the fibering, and each l_i lies in a fiber. It follows then that m_i, l_i generate π_1 of T_i, but further, it also follows that each m_i, l_i is not homotopic to 0 in M_1. Join each T_i to a base point, b, in M_1 by an arc α_i. Then by the above remarks each natural map $\pi_1(T_i \cup \alpha_i, b) \rightarrow \pi_1(M_1, b)$ is a monomorphism. Consider now the group $\pi_1(M_1, b) = G$ and subgroups $\pi_1(T_i \cup \alpha_i, b) = A_i$. If a different set of arcs α_i be selected, then a set of subgroups \overline{A}_i results, where each \overline{A}_i is a conjugate of A_i. In view of this, we may investigate the topological invariant $(G, [A_1], [A_2], \ldots, [A_n])$, where G is $\pi_1(M_1, b)$ and $[A_i]$ is the conjugacy class containing A_i. Call this invariant the peripheral system of M_1. (See [5] for the source of this invariant.)

Theorem 2. Suppose a compact 3-manifold M_2 has peripheral system $(G', [A'_1], [A'_2], \ldots, [A'_n])$, then if there exists an isomorphism $\phi: G \rightarrow G'$, mapping $[A_i]$ onto $[A'_i]$, M_1 is homeomorphic to M_2.

Proof. By Stallings theorem [1], M_2 is fibered over S^1 with fiber a 2-manifold S_2, where $\pi_1(S_2) = \phi(\pi_1(S_1))$. Now define homeomorphisms $\Psi_i: T_i \cup \alpha_i \rightarrow U_i \cup \beta_i$ (where U_i are the boundary tori of M_1 and β_i are arcs joining U_i to a base point in M_2) such that $\Psi^* = \phi$ for each element x in $\pi_1(T_i \cup \alpha_i)$. This may be done by virtue of [2] and the hypothesis. It is no loss of generality to assume the α_i all lie on one fiber, and similarly the β_i. Nielsen’s [2] may be slightly generalized (as in [6]) so that a homeomorphism Ψ_{n+1} may be constructed from the fiber containing the α_i to the fiber containing the β_i, satisfying $\Psi^* = \phi$ for elements x in H_1, and agreeing with the Ψ_i on $(T_i \cup \alpha_i) \cap$ (fiber containing α_i). Call the homeomorphism now defined on $\partial M_1 \cup$ (a fiber), Ψ. Ψ may be extended to a small closed product neighborhood of $\partial M_1 \cup$ (a fiber). Denote by N this neighborhood, and, by Ψ the homeomorphism thereon defined. Now $M_1 - (\text{int } N)$ is a solid torus of some genus (being fibered over an interval), and it is easily seen that Ψ^* maps the kernel of the inclusion $\pi_1(\partial(M_1 - \text{int } N)) \rightarrow \pi_1(M_1 - \text{int } N)$ onto the kernel of $\pi_1(\partial(M_2 - \text{int } \Psi(N))) \rightarrow \pi_1(M_2 - \text{int } \Psi(N))$. (The argument is exactly that in [6], with H_1 taking the place of the commutator subgroup.) Hence (as in [6]) Ψ may be extended to all of M_1 and the theorem is proved.

Bibliography

THE PRODUCT OF A NORMAL SPACE AND A METRIC SPACE NEED NOT BE NORMAL

BY E. MICHAEL

Communicated by Deane Montgomery, January 16, 1963

An old—and still unsolved—problem in general topology is whether the cartesian product of a normal space and a closed interval must be normal. In fact, until now it was not known whether, more generally, the product of a normal space X and a metric space Y is always normal. The purpose of this note is to answer the latter question negatively, even if Y is separable metric and X is Lindelöf and hereditarily paracompact.

Perhaps the simplest counter-example is obtained as follows: Take Y to be the irrationals, and let X be the unit interval, retopologized to make the irrationals discrete. In other words, the open subsets of X are of the form $U \cup S$, where U is an ordinary open set in the interval, and S is a subset of the irrationals. It is known, and easily verified, that any space X obtained from a metric space in this fashion is normal (in fact, hereditarily paracompact). Now let Q denote the rational points of X, and U the irrational ones. Then in $X \times Y$ the two disjoint closed sets $A = Q \times Y$ and $B = \{ (x, x) \mid x \in U \}$ cannot be separated by open sets. To see this, suppose that V is a neighborhood of B in $X \times Y$. For each n, let

$$U_n = \{ x \in U \mid (\{ x \} \times S_{1/n}(x)) \subset V \}.$$

1 Supported by an N.S.F. contract.

2 The usefulness of this space X for constructing counterexamples was first called to my attention, in a different context, by H. H. Corson.