Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Stronger forms of a class of inequalities of G. Pólya-G. Szegö, and L. V. Kantorovich


Authors: J. B. Diaz and F. T. Metcalf
Journal: Bull. Amer. Math. Soc. 69 (1963), 415-418
DOI: https://doi.org/10.1090/S0002-9904-1963-10953-2
MathSciNet review: 0146324
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. F. L. Bauer, A further generalization of the Kantorovic inequality, Numer. Math. 3 (1961), 117-119. MR 122824
  • 2. F. L. Bauer and A. S. Householder, Some inequalities involving the euclidean condition of a matrix, Numer. Math. 2 (1960), 308-311. MR 116027
  • 3. E. F. Beckenbach and Richard Bellman, Inequalities, Springer, Berlin, 1961; in particular pp. 44-45. MR 158038
  • 4. G. T. Cargo and O. Shisha, Bounds on ratios of means, J. Res. Nat. Bur. Standards 66B (1962), 169-170. MR 147595
  • 5. J. W. S. Cassels (see p. 330 and p. 340 of G. S. Watson, Serial correlation in regression analysis. I, Biometrika 42 (1955), 327-341). MR 73096
  • 6. W. Greub and W. Rheinboldt, On a generalization of an inequality of L. V. Kantorovich, Proc. Amer. Math. Soc. 10 (1959), 407-415. MR 105028
  • 7. Peter Henrici, Two remarks on the Kantorovich inequality, Amer. Math. Monthly 68 (1961), 904-906. MR 136623
  • 8. A. S. Householder and F. L. Bauer, On certain iterative methods for solving linear systems, Numer. Math. 2 (1960), 55-59. MR 116464
  • 9. L. V. Kantorovich, Funktsionalnii analyz i prikladnaya matematika, Uspehi Mat. Nauk 3 (1948), 89-185; in particular pp. 142-144 (also translated from the Russian by C. D. Benster, Nat. Bur. Standards Report No. 1509, March 7, 1952; in particular pp. 106-109).
  • 10. J. Kürschák, Math. Phys. Lapok 23 (1914), 378.
  • 11. Marvin Marcus and A. H. Cayford, Further results on the Kantorovich inequality, Notices Amer. Math. Soc. 9 (1962), 300.
  • 12. Marvin Marcus and N. A. Khan, Some generalizations of Kantorovich's inequality, Portugal. Math. 20 (1961), 33-38. MR 130261
  • 13. Morris Newman, Kantorovich's inequality, J. Res. Nat. Bur. Standards 64B (1959), 33-34. MR 109157
  • 14. G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Vol. 1, Springer, Berlin, 1925; in particular pp. 57, 213-214.
  • 15. A. H. Schopf, On the Kantorovich inequality, Numer. Math. 2 (1960), 344-346. MR 113892
  • 16. P. Schweitzer, Egy egyenlötlenség az aritmetikai középértékröl (An inequality concerning the arithmetic mean), Math. Phys. Lapok 23 (1914), 257-261.
  • 17. W. G. Strang, On the Kantorovich inequality, Proc. Amer. Math. Soc. 11 (1960), 468. MR 112046


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1963-10953-2

American Mathematical Society