Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

A Harnack inequality for nonlinear equations


Author: James Serrin
Journal: Bull. Amer. Math. Soc. 69 (1963), 481-486
DOI: https://doi.org/10.1090/S0002-9904-1963-10971-4
MathSciNet review: 0150443
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. D. Gilbarg, Some local properties of elliptic equations, Proc. Sympos. Pure Math., Vol. 4, Partial Differential Equations, pp. 127-142, Amer. Math. Soc., Providence, R. I., 1961. MR 133578
  • 2. D. Gilbarg, Boundary value problems for non-linear elliptic equations, Nonlinear Problems (edited by R. E. Langer), pp. 151-160, Univ. of Wisconsin Press, Madison, Wis., 1963. MR 146506
  • 3. D. Gilbarg and J. Serrin, On isolated singularities of solutions of second order elliptic differential equations, J. Analyse Math. 4 (1955-56), 309-340. MR 81416
  • 4. O. A. Ladyzhenskaya and N. Uraltseva, Quasi-linear elliptic equations and variational problems with many independent variables, Uspehi Mat. Nauk 16 (1961), 19-92; translated in Russian Math. Surveys 16 (1961), 17-91.
  • 5. W. Littman, G. Stampacchia and H. Weinberger, Regular points for elliptic equations with discontinuous coefficients (to appear). MR 161019
  • 6. C. B. Morrey, Jr., Second order elliptic equations and Hölder continuity, Math. Z. 72 (1959), 146-164. MR 120446
  • 7. C. B. Morrey, Jr., Existence and differentiability theorems for variational problems for multiple integrals, Partial Differential Equations and Continuum Mechanics, pp. 241-270, Univ. of Wisconsin Press, Madison, Wis., 1961. MR 121690
  • 8. J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591. MR 159138
  • 9. H. Royden, The growth of a fundamental solution of an elliptic divergence structure equation, Studies in Mathematical Analysis and Related Topics: Essays in honor of G. Pólya, pp. 333-340, Stanford Univ. Press, Stanford, Calif., 1962. MR 145190
  • 10. J. Serrin, Dirichlet's principle in the calculus of variations, Proc. Sympos. Pure Math., Vol. 4, Partial Differential Equations, pp. 17-22, Amer. Math. Soc., Providence, R. I., 1961. MR 137012


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1963-10971-4

American Mathematical Society