Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Lipschitz classes of functions and distributions in $E_n$


Author: M. H. Taibleson
Journal: Bull. Amer. Math. Soc. 69 (1963), 487-493
DOI: https://doi.org/10.1090/S0002-9904-1963-10972-6
MathSciNet review: 0150581
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. N. Aronszajn and K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385-475. MR 143935
  • 2. S. Bochner and K. Chandrasekharan, Fourier transforms, Ann. of Math. Studies No. 19, Princeton Univ. Press, Princeton, N. J., 1949. MR 31582
  • 3. A. P. Calderon, Lebesgue spaces of differentiable functions and distributions, Proc. Sympos. Pure Math. Vol. 4, pp. 33-49, Amer. Math. Soc., Providence, R. I., 1961. MR 143037
  • 4. A. P. Calderon, Intermediate spaces and interpolation, Warsaw meeting, September, 1960.
  • 5. A. P. Calderon and A. Zygmund, Singular integrals and periodic functions, Studia Math. 14 (1954), 249-271. MR 69310
  • 6. G. H. Hardy and J. E, Littlewood, Theorems concerning mean values of analytic or harmonic functions, Quart. J. Math. Oxford Ser. 12 (1941), 221-256. MR 6581
  • 7. I. I. Hirschman, Jr., Fractional integration, Amer. J. Math. 75 (1953), 531-546. MR 56730
  • 8. J. L. Lions, Dualité et interpolation, Math. Scand. 9 (1961), 147-177. MR 159212
  • 9. S. M. Nikolskiĭ, On embedding, continuity and approximation theorems for differentiable functions in several variables, Uspehi Mat. Nauk 16 (1961), no. 5 (101), 63-114. MR 149267
  • 10. E. M. Stein, On the functions of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466. MR 112932
  • 11. E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables. I. The theory of H, Acta Math. 103 (1960), 26-62. MR 121579
  • 12. M. Taibleson, Smoothness and differentiability conditions for functions and distributions on E, Dissertation, Univ. of Chicago, Chicago, Ill., August, 1962.
  • 13. A. Zygmund, Trigonometric series, 2nd ed., Vols. I, II, Cambridge Univ. Press, Cambridge, 1959. MR 107776
  • 14. A. Zygmund, On the preservation of classes of functions, J. Math. Mech. 8 (1959), 889-895. MR 117498


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1963-10972-6

American Mathematical Society