TWO THEOREMS CONCERNING FUNCTIONS
HOLOMORPHIC ON MULTIPLE
CONNECTED DOMAINS

BY E. L. STOUT

Communicated by Walter Rudin, March 25, 1963

1. Let Ω be a finitely connected plane domain whose boundary,
$\partial \Omega$, consists of the circles $\Gamma_0, \Gamma_1, \cdots, \Gamma_n$. We assume Γ_j lies in the
interior of Γ_0 for $j = 1, 2, \cdots, n$. Let Δ_0 be the interior of Γ_0 and let
Δ_j be the exterior of Γ_j, $j = 1, 2, \cdots, n$. We then have $\Omega = \bigcap_{j=0}^{n} \Delta_j$.
Let $H_\infty[\Omega]$ be the collection of all bounded holomorphic functions in
Ω. We shall say that a set S of points of Ω is an interpolation set for Ω
if given a bounded complex valued function w on S there is $f \in H_\infty[\Omega]$
such that $f(z) = w(z)$ for all $z \in S$. If $\{z_n\}_{n=1}^\infty$ is a sequence in Ω, without
limit points in Ω, we write $\{z_n\} = S_0 \cup S_1 \cup \cdots \cup S_n$ where the S_j are
pairwise disjoint and where the only limit points of S_j lie in Γ_j,
j = 0, 1, \cdots, n.

In the present note we sketch proofs for the following two theo­
rems:

THEOREM A. The sequence $\{z_n\}$ is an interpolation set for Ω if and
only if each S_j is an interpolation set for the disc Δ_j.

THEOREM B. Let f_1, f_2, \cdots, f_m be functions in $H_\infty[\Omega]$ such that
$|f_1(z)| + |f_2(z)| + \cdots + |f_m(z)| \geq \delta > 0$ for all $z \in \Omega$. Then there exist
functions $g_1, g_2, \cdots, g_m \in H_\infty[\Omega]$ such that $f_1g_1 + f_2g_2 + \cdots + f_mg_m = 1$.

L. Carleson [2] has established Theorem B in case Ω is the open
unit disc. He has also proved [1] that the sequence $\{z_n\}_{n=1}^\infty$ is an
interpolation sequence for the open unit disc if and only if there is a
$\delta > 0$ such that

$$\prod_{n \neq k} \left| \frac{z_n - z_k}{1 - \overline{z}_nz_k} \right| > \delta$$

for $k = 1, 2, 3, \cdots$. For a discussion and alternative proof see [3, pp.
194–208].

2. Outline of the proof of Theorem A. Let B_j be the Blaschke
product associated with the disc Δ_j and the set of points S_j,
$j = 0, \cdots, n$. Note that there is an $\eta > 0$ such that $|B_j(z)| > \eta$ for
z $\in S_k$ if $k \neq j$.

1 National Science Foundation Graduate Fellow.
Suppose now that \(S_j \) is an interpolation set for \(\Delta_j, j = 0, \cdots, n \). Let \(w \) be a bounded function on \(S \), and let \(f_j \in \mathcal{H}_\infty[\Delta_j] \) be such that
\[
f_j(z) = w(z)/(B_0(z) \cdots B_{j-1}(z)B_{j+1}(z) \cdots B_n(z))
\]
for all \(z \in S_j \). Define
\[
F = f_0B_1B_2 \cdots B_n + f_1B_0B_2 \cdots B_n + \cdots + f_nB_0B_1 \cdots B_{n-1}.
\]
Then \(F \in \mathcal{H}_\infty[\Omega] \) and \(F(z) = w(z) \) for all \(z \in S \).

Conversely, assume that \(\{z_n\}_{n=1}^\infty \) is an interpolation set for \(\Omega \). If \(f \in \mathcal{H}_\infty[\Omega] \) we define \(||f|| \) by
\[
(1) \quad ||f|| = \sup \{|f(z)| : z \in \Omega \}.
\]
A Banach space argument like that in [3, p. 196] shows that there is a constant \(M \) such that if \(w \) is a function on \(\{z_n\}_{n=1}^\infty \) with \(|w(z)| \leq 1 \) for all \(z \in \{z_n\}_{n=1}^\infty \), then there is \(f \in \mathcal{H}_\infty[\Omega] \) with \(||f|| \leq M \) and \(f(z) = w(z), \ z \in \{z_n\}_{n=1}^\infty \). Given \(z_k \in S_j \), let \(B_j^{(k)} \) be the Blaschke product associated with the disc \(\Delta_j \) and the set \(S \setminus \{z_k\} \). Let \(f \in \mathcal{H}_\infty[\Omega] \) be such that \(f(z_n) = 0 \) for \(n \neq k, f(z_k) = 1 \) and such that \(||f|| \leq M \). The function
\[
g = f/(B_0 \cdots B_{j-1}B_j^{(k)}B_{j+1} \cdots B_n)
\]
is in \(\mathcal{H}_\infty[\Omega] \). Since there is \(\delta > 0 \) such that \(|B_i(z)| \geq \delta \) for all \(z \in \Gamma_j, i \neq j \), we have that \(||g|| \leq M/\delta^n \). In particular then \(|g(z_k)| \leq M/\delta^n \). This yields
\[
|\delta^nM^{-1}f(z_k)/(B_0(z_k) \cdots B_{j-1}(z_k)B_{j+1}(z_k) \cdots B_n(z_k))| \leq |B_j^{(k)}(z_k)| .
\]
Since \(f(z_k) = 1 \), and the product \(B_0 \cdots B_{j-1}B_{j+1} \cdots B_n \) is uniformly bounded away from zero on \(S_j \), we have that \(B_j^{(k)}(z_k) \geq \delta_1 > 0 \). This estimate is uniform in \(k \), so \(S_j \) is an interpolation set for \(\Delta_j \).

3. Outline of the proof of Theorem B. Observe that \(\mathcal{H}_\infty[\Omega] \) is a commutative Banach algebra with identity if it is given the norm defined by (1). Let \(\mathfrak{M}[\Omega] \) be the maximal ideal space of \(\mathcal{H}_\infty[\Omega] \); we regard \(\mathfrak{M}[\Omega] \) as the collection of all nonzero complex homomorphisms of \(\mathcal{H}_\infty[\Omega] \) with the weak* topology. Let \(\mathfrak{M}_e[\Omega] \) be the collection of those homomorphisms \(\phi_\lambda \) of the form \(\phi_\lambda(f) = f(\lambda), \ \lambda \in \Omega \). It is known [3, p. 163] that to establish our result it suffices to prove \(\mathfrak{M}_e[\Omega] \) dense in \(\mathfrak{M}[\Omega] \).

For \(j = 1, 2, \cdots, n \), let \(\mathcal{H}_\infty^0[\Delta_j] \) be the closed subalgebra of \(\mathcal{H}_\infty[\Omega] \) consisting of those \(f \) which are restrictions to \(\Omega \) of functions in \(\mathcal{H}_\infty[\Delta_j] \) which vanish at infinity. It is known [4, p. 56] that if \(f \in \mathcal{H}_\infty[\Omega] \), then \(f \) can be written in the form
(2) \[f = f_0 + f_1 + \cdots + f_n, \]
\[f_0 \in H_\infty[\Delta_0], f_j \in H_\infty^0[\Delta_j], \ 1 \leq j. \]
It is immediate that this decomposition is unique; it yields
\[(3) \ H_\infty[\Omega] = H_\infty[\Delta_0] \oplus H_\infty^0[\Delta_1] \oplus \cdots \oplus H_\infty^0[\Delta_n], \]
the direct sum being understood in the sense of Banach spaces.

Following some ideas of I. J. Schark (see [3, p. 159, ff.]), we note that the function \(z \) is in \(H_\infty[\Omega] \). It gives rise to the function \(\xi \) on \(T[\Omega] \) given by \(\xi(\phi) = \phi(z) \). We can prove that \(\xi \) maps \(T[\Omega] \) onto \(\Omega \) and that \(\xi \) is one-to-one over \(\Omega \). If \(\alpha \in \partial \Omega \), set \(M_\alpha = \{ \phi \in T[\Omega] : \xi(\phi) = \alpha \} \). A slight modification of the argument for the disc case shows that if \(f \in H_\infty[\Omega] \), then \(f \) is constant on \(T[\Omega] \{ \alpha \} \) and that if \(f \) is so extensible, then \(f(z) = f(\alpha) \) for all \(\phi \in T[\Omega] \).

Suppose now that \(\phi \) is a multiplicative linear functional defined on \(H_\infty[\Delta_0] \) viewed as a subalgebra of \(H_\infty[\Omega] \) by the direct sum decomposition (3). Let \(\phi(z) \in \Omega \). Then \(\phi \) admits a unique extension to an element of \(T[\Omega] \). This is clear since \(\xi \) maps \(T[\Omega] \) onto \(\Omega \) and is one-to-one over \(\Omega \). If \(\alpha = \phi(z) \) lies in \(\Gamma_0 \), \(\phi \) also admits a unique extension to an element of \(T[\Omega] \). For uniqueness, suppose that \(\phi^* \) is an extension of \(\phi \) to all of \(H_\infty[\Omega] \). For \(f \in H_\infty[\Omega] \), write \(f = f_0 + f_1 + \cdots + f_n \) in accordance with (2). The linearity of \(\phi^* \) implies that \(\phi^*(f) = \phi^*(f_0) + \phi^*(f_1) + \cdots + \phi^*(f_n) \). Since \(\phi^* \) is an extension of \(\phi \), and since, for \(j = 1, 2, \ldots, n \), \(f_j \) is continuously extensible to \(\Omega \cup \{ \alpha \} \), it follows that \(\phi^*(f) = \phi(f_0) + f_1(\alpha) + \cdots + f_n(\alpha) \). This establishes the uniqueness of the extension. This choice of \(\phi^* \) yields a multiplicative functional. To see this, suppose \(g \in H_\infty[\Omega] \) and write \(g = g_0 + g_1 + \cdots + g_n \) by (2). Then \(fg = \sum_{j,k} f_j g_k \). Since \(\phi^* \) is plainly linear, we need only show \(\phi^*(f_j g_k) = \phi^*(f_j) \phi^*(g_k) \). If neither \(j \) nor \(k \) is zero, \(f_j g_k \) is continuously extensible to \(\Omega \cup \{ \alpha \} \), so we need only consider terms of the form \(f_0 g_k \) and \(f_j g_0 \). Suppose then that \(f \in H_\infty[\Delta_0], g \in H_\infty[\Delta_j], j \neq 0 \). Since \(\phi^*(g) = g(\alpha) \), we are finished if we can show \(\phi^*(fg - g(\alpha)f) = 0 \).

Write
\[fg - g(\alpha)f = h_0 + h_1 + \cdots + h_n \]
in accordance with (2). Then \(h_j \) is continuous at \(\alpha \) for \(j = 1, \ldots, n \), and since \(fg - g(\alpha)f \) is continuous at \(\alpha \), it follows that \(h_0 \) must be continuous at \(\alpha \) so that \(\phi(h_0) = h_0(\alpha) \). Therefore \(\phi^*(fg - g(\alpha)f) = h_0(\alpha) + h_1(\alpha) + \cdots + h_n(\alpha) = 0 \). We conclude that \(\phi^* \) is multiplicative.

If \(\phi \) is a multiplicative linear functional on \(H_\infty[\Delta_0] \) such that \(\phi(z) \in \Gamma_j \) for \(j \neq 0 \), our argument indicates that \(\phi \) admits many exten-
sions to an element of $\mathcal{M}[\Omega]$. If $\phi(z) \in \Delta_0 \setminus \overline{\Omega}$, then ϕ admits no extension.

The same argument applies to $\Delta_1, \ldots, \Delta_n$ in place of Δ_0. This also shows that every element of $\mathcal{M}[\Omega]$ is determined by its action on the subalgebras $H^\infty_\alpha[\Delta_0], H^0_\alpha[\Delta_1], \ldots, H^0_\alpha[\Delta_n]$. It now follows that $\mathcal{M}_e[\Omega]$ is dense in $\mathcal{M}[\Omega]$. For suppose $\phi \in \mathcal{M}[\Omega]$, and suppose $\alpha = \phi(z) \in \Gamma_k$. Let $\phi^{(j)}$ be the restriction of ϕ to the subalgebra $H^\infty_\alpha[\Delta_j]$. By Carleson's result for the disc, there is a point $\lambda \in \Delta_k$ such that the point evaluation $\phi^{(k)}(\lambda)$ near $\phi^{(k)}$ in the sense of the weak* topology in the maximal ideal space of $H^\infty_\alpha[\Delta_k]$. If λ is near α, then $\lambda \in \Omega$, and each of the point evaluations at $\lambda, \phi^{(j)}(\lambda)$ for $j \neq k$ is near the point evaluation $\phi^{(k)}(\lambda)$ in the maximal ideal space of $H^\infty_\alpha[\Delta_k]$. But then the point evaluation $\phi^{(k)}(\lambda) \in \mathcal{M}_e[\Omega]$ is near the homomorphism ϕ in $\mathcal{M}[\Omega]$. Thus $\mathcal{M}_e[\Omega]$ is dense in $\mathcal{M}[\Omega]$, and we have our result.

4. We can relax our condition on the boundary of Ω as follows. Our results are plainly invariant under conformal mapping. It is known [5, p. 377] that every finitely connected domain with no nondegenerate boundary components is conformally equivalent to a domain bounded by circles. Thus our results apply to this more general class of domains.

References

University of Wisconsin