ON LINKED BINARY REPRESENTATIONS OF PAIRS OF INTEGERS: SOME THEOREMS OF THE ROMANOV TYPE

BY G. J. RIEGER

Communicated by P. T. Bateman, March 7, 1963

1. Introduction. Let us denote by \(N \) the sequence \{1, 2, 3, \ldots \}, by \(p \) a prime, by \((a, b)\) the greatest common divisor of \(a \) and \(b \), by \([a, b]\) the least common multiple of \(a \) and \(b \), by \(\{*: \ldots \} \) resp. \(\mathcal{A}\{*: \ldots \} \) the set resp. number of * with the properties \(\ldots \), by \(\mu \) the Moebius function, by \(C \) an absolute positive constant and by \(C(*) \) a positive constant depending on * only.

Suppose \(N\subset N \) (\(j=1, 2, 3, 4 \)) and denote by \(y_1\sim y_2 \) an arbitrary relation (\(= \) linking) with \(y_{1,2}\in N \). For instance, \([y_1\sim y_2]= [y_1, y_2]= 1\) resp. \([y_1\sim y_2]= [y_1= y_2]\) can be considered a weak resp. strong linking. By a linked binary representation of a pair \(m, n \) with \(m\in N \) and \(n\in N \) we mean a solution \(#1, #2, #3, #4 \) of the Diophantine system \(x_1+x_2=m\wedge x_3+x_4=n \wedge x_j\in N_j \) (\(j=1, 2, 3, 4 \)) \(\forall x_j\sim x_4 \). Various generalizations are obvious (more summands, triples, etc.). We do not intend to give a detailed and general study of the questions arising in this context. We rather prefer to investigate two special problems of this type with \(\sim \) being \(= \); they are inspired by the following two well-known results of Romanov:

\[
E_a: = \{m: m = p + v^a \wedge p\text{ prime } \wedge v \in N\} \quad (1 < a \in N)
\]

and

\[
F_a: = \{m: m = p + a^v \wedge p\text{ prime } \wedge v \in N\} \quad (a \in N)
\]

have positive asymptotic density [1, pp. 63–70].

2. On Romanov's first theorem. Generalizing the result for \(E_a \), we show that the set \(\{m, n: m=p_1+v^a \wedge n=p_2+v^a \wedge p_{1,2}\text{ prime } \wedge v \in N\} \), considered as a set of lattice points in the plane, has positive asymptotic density in the plane:

Theorem 1. For \(1 < a \in N \) there exist constants \(C_1(a) \) and \(C_2(a) \) such that \(x > C_1(a) \) implies

\[
A_1(x, a): = A \{m, n: m < x \wedge n < x \wedge m = p_1 + v^a \wedge n = p_2 + v^a \wedge p_{1,2}\text{ prime } \wedge v \in N\} > C_2(a) x^2.
\]

\[\text{1 With support from NSF grant G-16305 to Purdue University.}\]
Proof. Let \(f_1(m, n; a) := A \{ p_1, p_2, v; p_1 + v^a = m \land p_2 + v^a = n \} \); since \(A_1(x, a) = A \{ m, n; m < x \land n < x \land f_1(m, n; a) > 0 \} \), the Schwarz inequality yields

\[
(1) \quad \left(\sum_{m < a} \sum_{n < a} f_1(m, n; a) \right)^2 \leq A_1(x, a) \sum_{m < a} \sum_{n < a} f_1^2(m, n; a).
\]

On the one hand, we find

\[
\sum_{m < a} \sum_{n < a} f_1(m, n; a) = A \{ p_1, p_2, v; p_1 + v^a < x \land p_2 + v^a < x \}
\]

\[
\geq A \left\{ p_1; p_1 < \frac{x}{2} \right\} A \left\{ p_2; p_2 < \frac{x}{2} \right\} A \left\{ v; v^a < \frac{x}{2} \right\}
\]

\[
> C_4 \left(\frac{x}{\log x} \right)^2 \left(\frac{x}{2} \right)^{1/a} \quad (x > C_8(a)).
\]

On the other hand, we find

\[
S_1(x, a) := \sum_{m < a} \sum_{n < a} f_1^2(m, n; a)
\]

\[
= A \{ p_1, p_2, p_3, p_4, v_1, v_2; p_1 + v_1 = p_2 + v_2 < x \land p_3 + v_1 = p_4 + v_2 < x \}
\]

\[
\leq \sum_{v_1 < x^{1/a}} \sum_{v_2 < x^{1/a}} A \{ p_1, p_2, p_3, p_4; p_1 - p_2 = p_3 - p_4 \}
\]

\[
= v_2 - v_1 \land p_1,2,3,4 < x \}.
\]

In case of \(v_1 = v_2 \) resp. \(v_1 \neq v_2 \) we use

\[
A \{ p; p < x \} < C_6 \frac{x}{\log x} \quad (x > 2)
\]

resp. Brun's sieve method \([2, 2, \text{Satz 4.2}]\) and obtain

\[
S_1(x, a) < C_7 \left(\frac{x}{\log x} \right)^2 x^{1/a} + 2 \sum_{x_1 < x^{1/a}} \sum_{x_2 < x^{1/a}} \left(C_8 \frac{x}{\log^2 x} g(v_1 - v_2) \right)^2
\]

\[
(x > C_6)
\]

where

\[
g(b) := \prod_{p | b} \left(1 + \frac{1}{p} \right) = \sum_{d | b; \nu(d) = 0} \frac{1}{d}.
\]

It follows

\[
S_1(x, a) < C_7 \left(\frac{x}{\log x} \right)^2 x^{1/a} + C_9 \frac{x^2}{\log^4 x} \sum_{u < x} F(u; x, a) g^2(u) \quad (x > C_6)
\]
where
\[F(u; x, a) = A \{ v_1, v_2 : v_2 < v_1 < x^{1/a} ∧ v_1 - v_2 = u \}. \]

Writing \(g(u) \) as a sum and changing the order of summation gives
\[
\sum_{u < x} F(u; x, a) g^2(u) = \sum_{d_1 < x} \sum_{d_2 < x} \sum_{\mu(d_1) \neq 0} \sum_{\mu(d_2) \neq 0} \frac{1}{d_1 d_2} B([d_1, d_2]; x, a)
\]

where
\[B(k; x, a) = \sum_{u < x; u \equiv 0 \mod k} F(u; x, a) < 2x^{2/a} k^{-1/a} a^w(k) \quad (\mu(k) \neq 0) \]

[1, p. 66] with
\[w(k) = A \{ p : p | k \} < C_{10} \frac{\log k}{\log \log k}. \]

Since \(\mu(d_1) \neq 0 \land \mu(d_2) \neq 0 \) imply \(\mu([d_1, d_2]) \neq 0 \), we obtain
\[
S_1(x, a) < C_7 \frac{x^{2+1/a}}{\log^2 x} + \frac{x^{2+2/a}}{\log^4 x} C_{11}(a) \sum_{d_1 < x} \sum_{d_2 < x} (d_1 d_2)^{-1} [d_1, d_2]^{-1/2a} (x > C_6).
\]

Using \([d_1, d_2]^2 \geq d_1 d_2 \), we find
\[S_1(x, a) < C_{12}(a) \frac{x^{2+2/a}}{\log^4 x} \quad (x > C_6). \]

(1), (2), and (3) give the desired result.

It is not difficult to determine a dependence of \(C_{12}(a) \) on \(a \) explicitly. Since \(A_1(x, a) \leq A \{ m, n : m < x ∧ n < x \} \), Theorem 1 is best possible with respect to the order of magnitude in \(x \). Theorem 1 is also correct for \(a = 1 \) but of no interest.

3. On Romanov's second theorem. In a similar way we generalize the result for \(F_a \).

Theorem 2. For \(1 < a \leq N \) there exist constants \(C_{13}(a) \) and \(C_{14}(a) \) such that \(x > C_{13}(a) \) implies
\[A_2(x, a) = A \{ m, n : m < x ∧ n < x ∧ m = p_1 + a^n ∧ n = p_2 + a^n \land p_{1,2} \text{ prime} \land v \in N \} > C_{14}(a) \frac{x^2}{\log x}. \]

Proof. Let \(f_2(m, n; a) = A \{ p_1, p_2, v : p_1 + a^n = m \land p_2 + a^n = n \} \). As
in the preceding proof, we find

\[\sum_{m<n} \sum_{n<s} f_2(m, n; a) > C_{16} \left(\frac{x}{\log x} \right)^2 \frac{\log x/2}{\log a} \quad (x > C_{16}(a)) \]

and

\[S_2(x, a) := \sum_{m<n} \sum_{n<s} f_3(m, n; a) \]

\[< C_{18} \left(\frac{x}{\log x} \right)^2 \frac{\log x}{\log a} + 2 \sum_{s_1 < s_2 < \log x/\log a} \left(C_8 \frac{x}{\log^2 x} g(a^{s_1} - a^{s_2}) \right)^2 \]

\[(x > C_{17}). \]

For \(v_1 > v_2 \) we have

\[g(a^{v_1} - a^{v_2}) = g(a)g(a^{v_1-v_2} - 1); \]

with \(h := v_1 - v_2 \) we get

\[S_2(x, a) < C_{19}(a) \frac{x^2}{\log x} + 2 \left(C_8 \frac{x}{\log^2 x} \right)^2 \frac{\log x}{\log a} \sum_{h<\log x/\log a} g^2(a^h - 1) \quad (x > C_{17}). \]

For \((a, d) = 1\), let \(e(a, d) \) denote the exponent of \(a \mod d \) (i.e., the certainly existing smallest \(t \in \mathbb{N} \) with \(a^t \equiv 1 \mod d \)); then \(d \mid (a^h - 1) \) implies \((a, d) = 1 \land e(a, d) \mid h\). Therefore,

\[\sum_{h<\log x/\log a} g^2(a^h - 1) = \sum_{h<\log x/\log a} \sum_{\mu(d_1) \neq 0} \frac{1}{d_1} \sum_{\mu(d_2) \neq 0} \frac{1}{d_2} \sum_{h<\log x/\log a} \frac{1}{d_1 d_2 \left[e(a, d_1), e(a, d_2) \right]} \]

\[\leq \frac{\log x}{\log a} \sum_{\mu(d_1) \neq 0} \sum_{\mu(d_2) \neq 0} \frac{1}{d_1 d_2} \sum_{\mu(d_2) \neq 0} \frac{1}{d_1 d_2 \left[e(a, d_1), e(a, d_2) \right]} \]

\[\leq \frac{\log x}{\log a} \left(\sum_{d<z} d^{-1} \frac{1}{d \log d} \right)^2 \leq C_{20}(a) \log x, \]

since \([a, b] \leq ab\) and since, for an arbitrary positive increasing function \(f \),
implies

\[\sum_{d=1}^{\infty} \frac{1}{df(d)} < \infty \]

\[\sum_{(d,a)=1; \mu(d) \neq 0} \frac{1}{d f(e(a, d))} < C_{21}(a, f) \]

[3, Satz 3]. Hence, we have

\[S_2(x, a) < C_{22}(a) \frac{x^2}{\log x} \quad (x > C_{17}). \]

(4), (5), and (1) with index 2 instead of 1 give the desired result.

It is not difficult to give an explicit dependence of \(C_{1b}(a) \) and \(C_{14}(a) \) on \(a \). Again, since

\[A_1(x, a) \leq A\{ p_1, p_2, \nu: p_{1,2} < x \land a^* < x \} \]

\[< \left(C_6 \frac{x}{\log x} \right)^2 \frac{\log x}{\log a} \quad (x > 2), \]

Theorem 2 is best possible in \(x \).

4. Generalization to algebraic number fields \(K \). For convenience, let \(K \) be a totally real algebraic number field. Denote by \(n \) the degree of \(K \), by \(J(K) \) the ring of all integers of \(K \), by small Greek letters elements of \(J(K) \), by \(\xi^{(1)}, \ldots, \xi^{(n)} \) the conjugates of \(\xi \), and by \(\xi < x \) the system \(|\xi^{(j)}| < x \) \((j = 1, \ldots, n) \). \(\pi \) is called a prime if \(\pi \) generates a prime ideal of \(J(K) \). Combining the method used above with ideas of [4], we arrive at direct generalizations of Theorem 1 and Theorem 2:

Theorem 1'. For \(1 < a \in \mathbb{N} \) there exist constants \(C_{28}(K, a) \) and \(C_{24}(K, a) \) such that \(x > C_{28}(K, a) \) implies

\[A\{ \sigma, \tau: \sigma = \pi_1 + \nu^a \land \tau = \pi_2 + \nu^a \land \pi_{1,2} \text{ prime} \land \pi_{1,2} < x \land \nu < x^{1/\alpha} \} \]

\[> C_{24}(K, a) x^{2n}. \]

Theorem 2'. For \(0 \neq \alpha \in J(K) \) and not a root of unity there exist constants \(C_{28}(K, \alpha) \) and \(C_{26}(K, \alpha) \) such that \(x > C_{26}(K, \alpha) \) implies

\[A\{ \sigma, \tau: \sigma = \pi_1 + \alpha^a \land \tau = \pi_2 + \alpha^a \land \pi_{1,2} \text{ prime} \land \pi_{1,2} \]

\[< x \land \nu \in \mathbb{N} \land \alpha^a < x \}

\[> C_{26}(K, \alpha) \frac{x^{2n}}{\log x}. \]

Again, the estimates are best possible in \(x \).
THE COHOMOLOGY OF CERTAIN ORBIT SPACES

By P. A. Smith

Communicated by Deane Montgomery, March 11, 1963

Let \((G, X)\) be a topological transformation group—or action—in which \(G\) is finite and \(X\) is locally compact. An important part of the cohomology of the orbit space \(X/G\) lies, so to speak, in the free part \(f\) of the action (i.e. the union of orbits of cardinality \([G:1]\)). The cohomology of \(f/G\) can be regarded as an \(H(G)\)-module. We shall exhibit a complete set of generators and relations for this module assuming \(G\) to be the direct product of cyclic groups of prime order \(p\) and \(X\) to be a generalized sphere over \(Z_p\) (see [4, p. 404]). \(H\) will always denote cohomology with values in \(Z_p\). A useful device consists in relating the generators of \(H(G)\) to those of \(G\).

Dimension functions. From now on let \(G=Z_p \times \cdots \times Z_p\), \(r\) factors, and let \(g_i\) be the collection of subgroups of order \(p^i\); \(g_0\) consists of the identity only. Let \(g, h, \cdots\) always denote subgroups of \(G\) and \(g_i, h_i, \cdots\) elements of \(g_i\). In particular \(g_0=\{1\}\) and \(g_r=G\).

By a dimension function of the pair \((G, p)\) we shall mean an integer-valued function \(n(g)\) of constant parity with values \(\geq -1\) and such that for each \(g\) different from \(G\)

\[
n(g) = n(G) + \sum_h (n(h) - n(G))
\]

summed over those \(h\)'s which lie in \(g_{r-1}\) and contain \(g\); when \(p=2\), constant parity is not required.

For a given dimension function \(n(g)\) let \(\Omega\) be the totality of se-

1 This work has been supported by the Office of Naval Research.