1. The dual space of a symmetric space. Let S be a symmetric space (that is a Riemannian globally symmetric space), and let $I_0(S)$ denote the largest connected group of isometries of S in the compact open topology. It will always be assumed that S is of the noncompact type, that is $I_0(S)$ is semisimple and has no compact normal subgroup $\neq \{e\}$. Let l denote the rank of S; then S contains flat totally geodesic submanifolds of dimension l. These will be called planes in S.

Let o be any point in S, K the isotropy subgroup of $G=I_0(S)$ at o and \mathfrak{f}_o and \mathfrak{g}_o their respective Lie algebras. Let $\mathfrak{g}_o=\mathfrak{f}_o+\mathfrak{p}_o$ be the corresponding Cartan decomposition of \mathfrak{g}_o. Let E be any plane in S through o, a_0 the corresponding maximal abelian subspace of \mathfrak{p}_o and A the subgroup $\exp(a_0)$ of G. Let C be any Weyl chamber in a_0. Then the dual space of a_0 can be ordered by calling a linear function X on a_0 positive if $X(\sigma T)>0$ for all σC. This ordering gives rise to an Iwasawa decomposition of G, $G=KAN$, where N is a connected nilpotent subgroup of G. It can for example be described by

$$N = \left\{ z \in G \left| \lim_{t \to \pm \infty} \exp(-tH)z \exp(tH) = e \right. \right\},$$

H being an arbitrary fixed element in C. The group N depends on the triple (o, E, C). However, well-known conjugacy theorems show that if N' is the group defined by a different triple (o', E', C') then $N'=gNg^{-1}$ for some $g \in G$.

DEFINITION. A horocycle in S is an orbit of a subgroup of the form gNg^{-1}, g being any element in G.

Let $t \mapsto \gamma(t)$ (t real) be any geodesic in S and put $T_t=s_{t/2}s_0$ where s_t denotes the geodesic symmetry of S with respect to the point $\gamma(t)$. The elements of the one-parameter subgroup T_t (t real) are called transvections along γ. Two horocycles ξ_1, ξ_2 are called parallel if there exists a geodesic γ intersecting ξ_1 and ξ_2 under a right angle such that $T \cdot \xi_1 = \xi_2$ for a suitable transvection T along γ. For each fixed $g \in G$, the orbits of the group gNg^{-1} form a parallel family of horocycles.

Let M and M', respectively, denote the centralizer and normalizer of A in K. The group $W=M'/M$, which is finite, is called the Weyl group.

1 This work was supported in part by the National Science Foundation, NSF GP-149.
PROPOSITION 1.1. The group G acts transitively on the set of horocycles in S. The subgroup of G which maps the horocycle $N \cdot o$ into itself equals MN.

Let \hat{S} denote the set of horocycles in S. Then we have the natural identifications

$$S = G/K, \quad \hat{S} = G/MN$$

the latter of which turns \hat{S} into a manifold, which we call the dual space of S.

PROPOSITION 1.2.
(i) The mapping

$$\phi: (kM, a) \rightarrow kaK$$

is a differentiable mapping of $(K/M) \times A$ onto S and a regular w-to-one mapping of $(K/M) \times A'$ onto S'.

(ii) The mapping

$$\hat{\phi}: (kM, a) \rightarrow kaMN$$

is a diffeomorphism of $(K/M) \times A$ onto \hat{S}.

In statement (i) which is well known, w denotes the order of W, A' is the set of regular elements in A and S' is the set of points in S which lie on only one plane through o.

PROPOSITION 1.3. The following relations are natural identifications of the double coset spaces on the left:

(i) $K \backslash G / K = A / W$;
(ii) $MN \backslash G / MN = A \times W$.

Statement (i) is again well known; (ii) is a sharpening of the lemma of Bruhat (see [6]) which identifies $MAN \backslash G / MAN$ with W.

The proofs of these results use the following lemma.

LEMMA 1.4.
(i) Let s_0 denote the geodesic symmetry of S with respect to o and let θ denote the involution $g \rightarrow s_0 g s_0$ of G. Then

$$(N \theta(N)) \cap K = \{e\}.$$

(ii) Let C and C' be two Weyl chambers in a_0 and $G = KAN$, $G = KAN'$ the corresponding Iwasawa decompositions. Then

$$(NN') \cap (MA) = \{e\}.$$

2. Invariant differential operators on the space of horocycles. For any manifold V, $C^\infty(V)$ and $C_c^\infty(V)$ shall denote the spaces of C^∞
functions on V (respectively, C^∞ functions on V with compact support). Let $D(S)$ and $D(\hat{S})$, respectively, denote the algebras of all G-invariant differential operators on S and \hat{S}. Let $S(a_0)$ denote the symmetric algebra over a_0 and $J(a_0)$ the set of W-invariants in $S(a_0)$. There exists an isomorphism Γ of $D(S)$ onto $J(a_0)$ (cf. [7, Theorem 1, p. 260], also [9, p. 432]). To describe $D(\hat{S})$, consider \hat{S} as a fibre bundle with base K/M, the projection $\hat{p}: \hat{S} \to K/M$ being the mapping which to each horocycle associates the parallel horocycle through 0. Since each fibre F can be identified with A, each $E_\sigma(S(a_0))$ determines a differential operator U_F on F. Denoting by $f|_F$ the restriction of a function f on \hat{S} to F we define an endomorphism D_U on $C^\infty(S)$ by

$$(D_U f)|_F = U_F(f|_F) \quad f \in C^\infty(S),$$

F being any fibre. It is easy to prove that the mapping $U \to D_U$ is a homomorphism of $S(a_0)$ into $D(S)$.

Theorem 2.1. The mapping $U \to D_U$ is an isomorphism of $S(a_0)$ onto $D(\hat{S})$. In particular, $D(\hat{S})$ is commutative.

Although G/MN is not in general reductive, $D(\hat{S})$ can be determined from the polynomial invariants for the action of MN on the tangent space to G/MN at MN (cf. [8, Theorem 10]). It is then found that the algebra of these invariants is in a natural way isomorphic to $S(a_0)$, whereupon Theorem 2.1 follows. Let \hat{f} denote the inverse of the mapping $U \to D_U$.

3. The Radon transform. Let ξ be any horocycle in S, ds_ξ the volume element on ξ. For $f \in C^\infty_c(S)$ put

$$\hat{f}(\xi) = \int f(s)ds_\xi, \quad \xi \in \hat{S}.$$

The function \hat{f} will be called the **Radon transform** of f.

Theorem 3.1. The mapping $f \to \hat{f}$ is a one-to-one linear mapping of $C^\infty_c(S)$ into $C^\infty_c(\hat{S})$.

Now extend a_0 to a Cartan subalgebra \mathfrak{h}_0 of \mathfrak{g}_0; of the corresponding roots let P_+ denote the set of those whose restriction to a_0 is positive (in the ordering defined by C). Put $\rho = \frac{1}{2} \sum_{\alpha \in P_+} \alpha$ and let $\varphi = \hat{\varphi}$ denote the unique automorphism of $S(a_0)$ given by $\varphi(H = H - \rho(H)$ ($H \in a_0$) (cf. [7, p. 260]).

Theorem 3.2. Let $\mathcal{D}(\hat{S})$ be given by

$$\mathcal{D}(\hat{S}) = \{ E \in D(\hat{S}) \mid \varphi(E) \in J(a_0) \},$$
and let $D \rightarrow \mathcal{D}$ denote the isomorphism of $D(S)$ onto $\mathcal{D}(S)$ such that

$\mathcal{D}(\mathcal{D}(D)) = \Gamma(D)$, \quad $D \in D(S)$.

Then

$(Df)^\ast = \mathcal{D}f$ for $f \in C_c^\infty(S)$.

In view of the duality between points and horocycles there is a natural dual to the transform $f \rightarrow \mathcal{D}f$. This dual transform associates to each function $\psi \in C^\infty(S)$ a function $\mathcal{D}\psi \in C^\infty(S)$ given by

$$\mathcal{D}\psi(p) = \int_{\xi \in \mathcal{P}} \psi(\xi) \, dm(\xi), \quad p \in S,$$

where the integral on the right is the average of ψ over the (compact) set of horocycles passing through p. We put

$$I_f = (\mathcal{D}f)^\ast, \quad f \in C^\infty_c(S)$$

and wish to relate f and I_f.

Theorem 3.3. Suppose the group $G = I_0(S)$ is a complex Lie group. Then

$$\Box I_f = cf, \quad f \in C^\infty_c(S),$$

where c is a constant $\neq 0$ and \Box is a certain operator in $D(S)$, both independent of f.

We shall now indicate the definition of \Box. Let J denote the complex structure of the Lie algebra \mathfrak{g}_0. Then the Cartan subalgebra \mathfrak{h}_0 above can be taken as $\mathfrak{a}_0 + J\mathfrak{a}_0$ and can then be considered as a complex Cartan subalgebra of \mathfrak{g}_0 (considered as a complex Lie algebra). Let Δ' denote the corresponding set of nonzero roots and for each $\alpha \in \Delta'$ select H'_α in \mathfrak{h}_0 such that $B'(H'_\alpha, H) = \alpha(H)$ ($H \in \mathfrak{h}_0$) where B' denotes the Killing form of the complex algebra \mathfrak{g}_0. Then $H'_\alpha \in \mathfrak{a}_0$ and the element $\prod_{\alpha \in \Delta'} H'_\alpha$ in $S(\mathfrak{a}_0)$ is invariant under the Weyl group W. Then \Box is the unique element in $D(S)$ such that

$$\Gamma(\Box) = \prod_{\alpha \in \Delta'} H'_\alpha.$$

The proof of Theorem 3.3 is based on Theorem 3 in Harish-Chandra [5] (see also Gelfand-Naïmark [4, p. 156]), together with the Darboux equation for S ([9, p. 442]). In the case when S is the space of positive definite Hermitian $n \times n$ matrices a formula closely related
to (1) was given in Gelfand [1]. Radon's classical problem of representing a function in \(\mathbb{R}^n \) by means of its integrals over hyperplanes was solved by Radon [13] and John [10]. Generalizations to Riemannian manifolds of constant curvature were given by Helgason [8], Semyanistyi [15] and Gelfand-Graev-Vilenkin [3].

4. Applications to invariant differential equations. We shall now indicate how Theorem 3.3 can be used to reduce any \(G \)-invariant differential equation on \(S \) to a differential equation with constant coefficients on a Euclidean space. The procedure is reminiscent of the method of plane waves for solving homogeneous hyperbolic equations with constant coefficients (see John [11]).

Definition. A function on \(S \) is called a *plane wave* if there exists a parallel family \(\mathcal{E} \) of horocycles in \(S \) such that (i) \(S = \bigcup_{\xi \in \mathcal{E}} \xi \); (ii) For each \(\xi \in \mathcal{E} \), \(f \) is constant on \(\xi \).

Theorem 3.3 can be interpreted as a decomposition of an arbitrary function \(f \in C_c^\infty(S) \) into plane waves.

Now select \(g \in G \) such that \(\mathcal{E} \) is the family of orbits of the group \(gNg^{-1} \). The manifold \(gNg^{-1} \cdot o \) intersects each horocycle \(\xi \in \mathcal{E} \) orthogonally. A plane wave \(f \) (corresponding to \(\mathcal{E} \)) can be regarded as a function \(f^* \) on the Euclidean space \(\mathcal{A} \). If \(D \in \mathcal{D}(S) \), then \(Df \) is also a plane wave (corresponding to \(\mathcal{E} \)) and \((Df)^* = D_A f^* \), where \(D_A \) is a differential operator on \(\mathcal{A} \). Using the fact that \(aNa^{-1} \subseteq \mathcal{N} \) for each \(a \in \mathcal{A} \) it is easily proved (cf. [7, Lemma 3, p. 247] or [12, Theorem 1]) that \(D_A \) is invariant under all translations on \(\mathcal{A} \). Thus an invariant differential equation in the space of plane waves (for a fixed \(\mathcal{E} \)) amounts to a differential equation with constant coefficients on the Euclidean space \(\mathcal{A} \). Using Theorem 3.3, and the fact that \(\Box \) commutes elementwise with \(\mathcal{D}(S) \), an invariant differential equation for arbitrary functions on \(S \) can be reduced to a differential equation with constant coefficients (and is thus, in principle, solvable).

Example: The wave equation on \(S \). For an illustration of the procedure above we give now an explicit global solution of the wave equation on \(S \) (\(I_0(S) \) assumed complex).

Let \(\Delta \) denote the Laplacian on \(S \) and let \(f \in C_c^\infty(S) \). Consider the differential equation

\[
\Delta u = \frac{\partial^2 u}{\partial t^2}
\]

with initial data

\[
(2) \quad u(p, 0) = 0; \quad \left\{ \frac{\partial}{\partial t} u(p, t) \right\}_{t=0} = f(p) \quad (p \in S).
\]
Let Δ_A denote the Laplacian on A (in the metric induced by E), $\|p\|$ the length of the vector p in §3. Given $a \in A$, let $\log a$ denote the unique element $H \in a_0$ for which $\exp H = a$. For simplicity, let e^p denote the function $a \mapsto e^{\langle \log a \rangle}$ on A. Let ξ denote the horocycle $N \cdot o$.

Given $x \in G$, $k \in K$, consider the function

$$F_{k,x}(a) = \int f(xka \cdot s) ds_\xi \quad (a \in A)$$

and the differential equation on $A \times R$,

$$\left(\Delta_A - \|p\|^2 \right) V_{k,x}^t = -\frac{\partial^2}{\partial t^2} V_{k,x}^t,$$

with initial data

$$V_{k,x}^0 = 0; \quad \left\{ \frac{\partial}{\partial t} V_{k,x}^t \right\}_{t=0} = e^p F_{k,x}.$$

Equation (3) is just the equation for damped waves in the Euclidean space A and is explicitly solvable (see e.g. [14, p. 88]). The solution of (1) is now given by

$$u(p, t) = c \Box_p (V(p, t)),$$

where

$$(4) \quad V(xK, t) = \int_K V_{k,x}^t(k) dk.$$

Here dk is the normalized Haar measure on K and c is the same constant as in Theorem 3.3. It is not hard to see that the integral in (4) is invariant under each substitution $x \mapsto xu$ ($u \in K$) so the function $V(p, t)$ is indeed well defined.

References

Massachusetts Institute of Technology