ON THE STRUCTURE OF SEMI-NORMAL OPERATORS

BY C. R. PUTNAM

Communicated by P. R. Halmos, July 7, 1963

1. Preliminaries. Only bounded operators on a Hilbert space \mathcal{H} of elements x will be considered. If A is self-adjoint with the spectral resolution

$A = \int \lambda dE(\lambda),$

and if $\mathfrak{H}_a = \mathfrak{H}_a(A)$ denotes the set of elements x for which $\|E(\lambda)x\|^2$ is an absolutely continuous function of λ, then \mathfrak{H}_a is a subspace; cf. [2, p. 240], [3, p. 436] and [6, p. 104]. If $\mathfrak{H} = \mathfrak{H}_a$, then A is called absolutely continuous. The one-dimensional Lebesgue measure of the spectrum of a self-adjoint operator A will be denoted by $\text{meas} \, \text{sp}(A)$.

An operator T on \mathfrak{H} is called semi-normal if

$TT^* - T^*T = D \geq 0$ or $D \leq 0.$

There will be proved the following result concerning such an operator.

2. Theorem. If T satisfies (2) and if $\mathcal{M} = \mathcal{M}_T$ is the smallest subspace of \mathfrak{H} reducing T and containing the range of D, then

$T + T^*$ is absolutely continuous on $\mathcal{M},$

and, if \mathcal{M}^\perp denotes the orthogonal complement of \mathcal{M} (so that \mathcal{M}^\perp also reduces T), then

T is normal on $\mathcal{M}^\perp.$

In addition,

$2\pi \|D\| \leq \|T - T^*\| \, \text{meas} \, \text{sp}(T + T^*),$

and the inequality (5) is optimal in the sense that there exist examples with $D \neq 0$ for which (5) becomes an equality.

As a consequence, if T is semi-normal but not normal, then $\mathfrak{H}_a(T + T^*) \neq 0$, a result which can also be concluded from [4, Corollary 3, p. 1029], where the symbol "<' should be replaced by "$\neq". (This same Corollary, incidentally, also implies the result proved by Andô [1] that a completely continuous semi-normal operator T must be normal. In fact, if T is completely continous, so also are T^* and $T + T^*$. But the spectrum of $T + T^*$ clearly must be of measure zero.)

If θ is real and $T(\theta) = e^{i\theta}T$, then (2) is unchanged if T is replaced by $T(\theta)$. Also, it is clear that the set $\mathcal{M}_{T(\theta)}$ is independent of θ. It follows that (3), (4) and (5) remain valid if, in each instance, T is

1 This work was supported by the National Science Foundation research grant NSF-G18915.
replaced by \(T(\theta) \). In particular then, relations (3) and (5) become assertions concerning the absolute continuity and spectra of both the real and the imaginary parts of a semi-normal operator \(T \).

The proof of the Theorem will depend upon results proved in [5] and which will be stated here, in a form convenient for application, as a

Lemma. Let \(H \) and \(J \) be self-adjoint operators and suppose that
\[
(6) \quad HJ - JH = iC, \text{ where } C \supseteq 0 \text{ or } C \subseteq 0.
\]
Then,
\[
(7) \quad \mathcal{Q} \subseteq \mathcal{S}_a(H),
\]
where \(\mathcal{Q} \) denotes the smallest subspace reducing both \(H \) and \(J \) and also containing the range of \(C \). Furthermore,
\[
(8) \quad \pi ||C|| \leq ||J|| \text{ meas sp}(H).
\]

It is clear from the symmetry of the condition (6) that (7) and (8) remain true if \(H \) and \(J \) are interchanged.

3. **Proof of the Theorem.** Let \(T \) be represented as
\[
(9) \quad T = H + iJ, \text{ where } H = (T + T^*)/2 \text{ and } J = (T - T^*)/2i,
\]
so that (2) and (6) are equivalent by virtue of (9) and
\[
(10) \quad D = 2C.
\]
It is clear that the space \(\mathcal{Q} \) of the Lemma must then coincide with the space \(\mathcal{M} \) of the Theorem. Relations (3) and (5) now follow respectively from (7) and (8), while relation (4) is a consequence of the fact that \(\mathcal{M}^\perp \) is contained in the null space of \(D \). An example involving finite interval Hilbert transforms was given in [5] for which the hypothesis of the Lemma is fulfilled and for which (8) becomes an equality (with \(C \neq 0 \)). This result in turn yields, by virtue of (9) and (10), an example in which equality holds in (5) and \(D \neq 0 \).

References

5. ———, *Commutators, absolutely continuous spectra, and singular integral operators* (to appear).

Purdue University