1. Introduction. Brown [1] has shown that an S^{n-1} embedded in a locally flat manner in S^n is flat and hence tame in S^n. Bing [2] and Moise [3] have shown that locally tame subsets of 3-manifolds are tame. However, in the general case, it is not known whether a manifold N embedded in a locally flat manner in a triangulated manifold M or a polyhedron P embedded in a locally tame manner in a triangulated manifold M are tame in M. Partial solutions to both of these problems have been obtained by the author and will be stated in §3 of this paper. I have been informed by R. H. Bing that Herman Gluck has obtained similar results.

2. Definitions and notations. Let N^k be a combinatorial k-manifold. Then $(N^k)^r$ will denote the rth barycentric subdivision of N^k. If α is a k-simplex of $(N^k)^r$ and α'' is the union of all simplices of $(N^k)^{r+2}$ contained in α, then C_{α} will denote the closed simplicial neighborhood of $|\alpha''|$, the polyhedron of α'', in $(N^k)^{r+2}$. That is C_{α} is the union of all closed simplices in $(N^k)^{r+2}$ that meet $|\alpha''|$. Since α'' is collapsible, C_{α} is a combinatorial k-ball [4].

The statement that f is a locally flat embedding of a k-manifold N^k in an n-manifold N^n, means that each point of $f(N^k)$ has a neighborhood U in N^n such that the pair $(U, U\cap f(N^k))$ is homeomorphic to the pair (R^n, R^k).

Two definitions of locally tame will now be given.

DEFINITION 1. Let N be a manifold topologically embedded in a triangulated manifold M. N is locally tame if for each point p of N, there exists a neighborhood U of p in M and a homeomorphism h of U into M, such that $h[\text{Cl}(U\cap N)]$ is a polyhedron in M.

DEFINITION 2. Let P be a polyhedron topologically embedded in a triangulated manifold M. P is locally tame if for each point p of P, there exists a neighborhood U of p in M and a homeomorphism h of U into M, such that $h[\text{Cl}(U\cap P)]$ is piecewise linear with respect to a fixed triangulation T of P.

Let K be a complex topologically embedded by f in a triangulated n-manifold N^n and let $\epsilon > 0$. Suppose there exists an ϵ-homeomorphism h of N^n onto itself such that if $U_\epsilon(f(K))$ denotes the set of points in N^n whose distance from $f(K)$ is less than ϵ, then
(i) \(h|N^n - U_*(f(K)) = 1 \),
(ii) \(hf: K \to N^n \) is a piecewise linear embedding.
Then \(f(K) \) will be said to be \(\varepsilon \)-tame in \(N^n \).

Theorem 1. Let \(f \) be a locally flat embedding of a closed combinatorial \(k \)-manifold \(N^k \) in a closed combinatorial \(n \)-manifold \(N^n \), \(2k + 2 \leq n \) and \(\varepsilon > 0 \). Then \(f(N^k) \) is \(\varepsilon \)-tame in \(N^n \).

Theorem 2. Let \(f_1 \) and \(f_2 \) be locally flat (locally tame) embeddings of a closed combinatorial \(k \)-manifold \(N^k \) (finite \(k \)-polyhedron \(P^k \)) in \(S^n \) and \(2k + 2 \leq n \). Then there exists a homeomorphism \(h \) of \(S^n \) onto itself such that \(hf_1 = f_2 \).

Theorem 3. Let \(f \) be a locally flat embedding of a \(k \)-manifold \(N^k \) in a combinatorial \(n \)-manifold \(N^n \) and \(2k + 2 \leq n \). Then \(f(N^k) \) is locally tame (Definition 1).

Theorem 4. Let \(f \) be a locally tame (Definition 2) embedding of a possibly infinite \(k \)-polyhedron \(P^k \) as a closed subset of the interior of a combinatorial \(n \)-manifold \(N^n \), \(2k + 2 \leq n \) and \(\varepsilon > 0 \). Then \(f(P^k) \) is \(\varepsilon \)-tame in \(N^n \).

4. Reference theorems.

Homma's Theorem [5]. Let \(M^n \), \(\hat{M}^n \) and \(\hat{P}^k \) be two finite combinatorial \(n \)-manifolds and a finite polyhedron such that \(\hat{M}^n \) is topologically embedded in \(M^n \), \(\hat{P}^k \) is piecewise linearly embedded in \(\text{Int}(M^n) \) and \(2k + 2 \leq n \). Then for \(\varepsilon > 0 \), \(\hat{P}^k \) is \(\varepsilon \)-tame in \(M^n \).

Gluck's Modification of Homma's Theorem [6]. Let the following be given:
(i) \(M^n \), a possibly noncompact combinatorial \(n \)-manifold;
(ii) \(\hat{M}^n \), a possibly noncompact combinatorial \(n \)-manifold, topologically embedded in \(M^n \);
(iii) \(\hat{P}^k \), a possibly infinite polyhedron, piecewise linearly embedded as a closed subset of \(\text{Int}(\hat{M}^n) \);
(iv) \(\hat{L} \), a subpolyhedron of \(\hat{P}^k \) such that \(\text{Cl}(\hat{P}^k - \hat{L}) \) is a finite polyhedron, and such that \(\hat{L} \) is piecewise linearly embedded in \(M^n \) as well as in \(\hat{M}^n \).

If \(2k + 2 \leq n \), then for any \(\varepsilon > 0 \), there is an \(\varepsilon \)-homeomorphism \(F \) of \(M^n \) onto \(M^n \) such that under \(F \), \(\hat{P}^k - \hat{L} \) is \(\varepsilon \)-tame in \(M^n \) and \(F|\hat{L} = 1 \).

5. Partial proofs of results.

Lemma 1. Suppose the following are given:
(i) The hypotheses of Theorem 1 are satisfied.

(ii) \(\{ (U_i, U_i \cap f(N^k)) \text{, } i = 1, \ldots, q \} \) is a finite open cover of \(f(N^k) \) obtained by applying the definition of locally flat.

(iii) \(\epsilon > 0 \).

Then there exists an integer \(r \) such that if \(\alpha \) is a \(k \)-simplex of \((N^k)_r \) and if \(C_{f(\alpha)} = f(C_\alpha) \),

(a) \(f(\alpha) \subseteq C_{f(\alpha)} \subseteq U_j \cap f(N^k) \) for some \(j \).

(b) \(C_{f(\alpha)} \) is \(\epsilon \)-tame in \(N^k \).

Conclusion (a) is obvious since every open cover of a compact metric space has a Lebesgue number and the limit of the mesh of \(f(N^k)_i \) as \(i \) approaches infinity is zero.

Let \(r \) and \(j \) be integers such that conclusion (a) is true. Let \(h_j \) be the homeomorphism of \((U_j, U_j \cap f(N^k)) \) onto \((R^n, R^k) \). Since \(C_\alpha \) is a bicollared \([1] \) \(k-1 \) sphere in \(N^k \), \(h_j(f(C_\alpha)) \) is a bicollared \(k-1 \) sphere in \(R^k \). Hence \(h_j(f(C_\alpha)) \) is a tame \(k \)-cell in \(R^k \) and therefore \(U_j \) can be triangulated as a combinatorial \(n \)-manifold in such a way that \(f: C_\alpha \to U_j \) is a piecewise linear embedding.

We now apply Homma's theorem. Let \(M^n = N^n \) be a closed regular neighborhood of \(C_{f(\alpha)} \) in \(U_j \) and \(\hat{P}^n = C_{f(\alpha)} \). Homma's theorem asserts that \(C_{f(\alpha)} \) is \(\epsilon \)-tame in \(N^n \).

PROOF OF THEOREM 1. Let \(r \) be an integer such that if \(\alpha \) is a \(k \)-simplex of \((N^k)_r \), Lemma 1 is valid. Let \(A_i \) denote the proposition that if \(K_i \) is a connected homogeneous \(k \)-subcomplex of \((N^k)_r \) containing \(i \) \(k \)-simplexes, then \(f(K_i) \) is \(\epsilon \)-tame in \(N^n \) for each \(\epsilon > 0 \). It suffices to show that \(A_i \) is true for each positive integer \(i \).

\(A_1 \) is true by Lemma 1. Suppose \(A_i \) is true for \(1 \leq i \leq j \). Let \(K_{j+1} \) be a connected homogeneous \(k \)-subcomplex of \((N^k)_r \) containing \(j+1 \) \(k \)-simplexes. Then \(K_{j+1} = K_j \cup \alpha \), where \(K_j \) is a connected homogeneous \(k \)-subcomplex of \((N^k)_r \) containing \(j \) \(k \)-simplexes and \(\alpha \) is a \(k \)-simplex of \((N^k)_r \). Let \(\epsilon > 0 \) and \(\epsilon' = \epsilon/2 \), then by assumption, \(f(K_i) \) is \(\epsilon' \)-tame in \(N^n \) and by Lemma 1, \(C_{f(\alpha)} \) is \(\epsilon' \)-tame in \(N^n \).

Let \(h_k \) and \(h_\alpha \) be the \(\epsilon' \)-homeomorphisms for \(f(K_j) \) and \(C_{f(\alpha)} \) respectively such that they are \(\epsilon' \)-tame in \(N^n \). Let \(U_\alpha \) be an open ball neighborhood of \(h_\alpha(C_{f(\alpha)}) \) in \(N^n \), and \(W_\alpha = h_\alpha^{-1}(U_\alpha) \).

We will complete the proof of \(A_{j+1} \) by applying Gluck's modification of Homma's theorem. Let \(M^n = h_k(w_\alpha) \) triangulated as an open subset of \(N^n \), \(\hat{M}^n = h_k(W_\alpha) \) triangulated as a combinatorial \(n \)-manifold such that \(h_k f: C_\alpha \to h_k(W_\alpha) \) is a piecewise linear embedding. Take \(\hat{P}^n = h_k[C_{f(\alpha)} \cap f(K_j)] \cup h_k(f(\alpha)) \) and \(\hat{L} = h_k[C_{f(\alpha)} \cap f(K_j)] \). By choice of \(h_k \), \(\hat{L} \) is piecewise linearly embedded in both \(M^n \) and \(\hat{M}^n \). Let \(\epsilon'' \) be picked such that \(0 < \epsilon'' < \epsilon' \) and such that \([U_{\epsilon''}, (h_k(f(\alpha)))] \cap h_k(f(K_j)) \subseteq \hat{L} \).
and \(\text{Cl}[U_{b'}(f(\alpha))) \subset h_k(W_a) \). The hypotheses of Gluck's theorem are satisfied, hence there exists an \(\epsilon'' \)-homeomorphism \(g \) of \(M^n \) onto itself such that \(\hat{P}^k - \hat{L} \) is \(\epsilon'' \)-tame in \(M^n \) under \(g \) and \(g|\hat{L} = 1 \). \(g \), which is the identity on \(h_k[f(K_j) \cap W_a] \) and near the boundary of \(h_k(W_a) \), may be extended via the identity to an \(\epsilon'' \)-homeomorphism \(\tilde{g} \) of \(N^n \) onto itself.

Then \(F = \tilde{g}h_k \) is an \(\epsilon \)-homeomorphism of \(N^n \) onto itself, such that under \(F, f(K_{j+1}) \) is \(\epsilon \)-tame in \(N^n \). Thus \(A_{j+1} \) is true and by induction the theorem is proved.

Theorems 1 and 4 reduce the proof of Theorem 2 to the piecewise linear case which has already been handled in [7].

The proof of Theorem 3 is an easy application of Homma's theorem. The following lemma also follows from Homma's theorem.

Lemma 2. Suppose the following are given:

(i) The hypotheses of Theorem 4 are satisfied except \(P^k \) is finite.
(ii) \(\{(U_\lambda, U_\lambda \cap f(P^k), \lambda = 1, \cdots, q\} \) is a finite open cover of \(f(P^k) \) obtained by applying Definition 2 of locally tame.
(iii) \(\epsilon > 0 \).

Then there exists a triangulation of \(f(P^k) \) such that the closed simplicial neighborhood of any simplex in this triangulation of \(f(P^k) \) is contained in \(U_\lambda \cap f(P^k) \) for some \(j \) and is \(\epsilon \)-tame in \(N^n \).

Lemma 2, together with Gluck's modification of Homma's theorem are sufficient to prove Theorem 4.

Actually, Lemma 1 shows that locally flat closed combinatorial manifolds with the correct codimension are locally tame according to Definition 2. This, together with Theorem 4, would yield Theorem 1 as a corollary.

References

Florida State University