ON HEIGHTS IN NUMBER FIELDS¹

BY S. SCHANUEL

Communicated by Felix Browder, May 14, 1963

Let \(K \) be a number field, of degree \(N \) over \(\mathbb{Q} \).

Let \(S_\alpha \) be the set of archimedean absolute values of \(K \), normalized to extend the ordinary absolute value on \(\mathbb{Q} \). For \(x \in K^* \), \(v \in S_\alpha \), put

\[
\|x\|_v = |x|^N_v,
\]

where \(N_v \) is the local degree \([K_v: \mathbb{Q}_v]\), so \(N_v = 1 \) or 2.

For \(X = (X_1, \ldots, X_m) \in K^m \), put

\[
\|X\|_v = \sup \|X_i\|_v, \quad H_\infty(X) = \prod_{v \in S_\alpha} \|X\|_v; \quad \text{and let } [X] \text{ denote the fractional ideal generated by } X_1, \ldots, X_m. \text{ Then the height of } X \text{ is } N[X]^{-1}H_\infty(X).
\]

The class of a point in projective space \(P^{m-1}(K) \) is the class (modulo principal ideals) of the fractional ideal generated by homogeneous coordinates for \(X \).

Theorem 1. The number of points in \(P^{m-1}(K) \) of a given class, with height at most \(B \), is

\[
\frac{\kappa_m}{\xi_K(m)} B^m + O(B^{m-1/N}),
\]

where

\[
\kappa_m = \left(\frac{2n(2\pi)^{m^2}}{\sqrt{d}} \right)^m \frac{R}{\omega^m} m^n;
\]

except that for \(m = 2, N = 1 \), the error term is to be replaced by \(O(B \log B) \).

The notation is standard (cf. [1]). For a discussion of the setting of the problem, see [2, Chapter III]. The burden of the proof is carried by Theorem 2.

An \(S_\alpha \)-divisor, or simply divisor on \(K \) is a pair \(b = (a, B) \), where \(a \) is a nonzero fractional ideal and \(B \) is a positive real number. The norm of \(b \) is \(\|b\| = Na^{-1}B \). Map \(K^m - 0^m \) to the group of divisors by \(b_x = ([X], H_\infty(X)) \). For \(m = 1 \), this is a homomorphism, with kernel \(U \) (the group of units of \(K \)) and image the principal divisors.

Let \(U \) act on \(K^m \) by componentwise multiplication. Then associated to any divisor \(b \) is an \(S_\alpha \)-parallelotope \(L_m(b) \subseteq (K^m - 0^m)/U \); it is the set of all orbits \(UX \) for which \(b_x \leq b \), that is: \([X] \subseteq a, H_\infty(X) \leq B \). Similarly, the restricted \(S_\alpha \)-parallelotope \(L'_m(b) \) is the set of all \(UX \) for which \([X] = a, H_\infty(X) \leq B \). Let \(\lambda_m, \lambda'_m \) be the cardinalities of \(L_m, L'_m \).

¹ Details and related results will appear in a forthcoming paper.
Remark 1. \(\lambda_m(b), \lambda'_m(b), \|b\| \) depend only on the class of \(b \) modulo principal divisors.

Remark 2. \(\lambda_m(b) = \lambda'_m(b) = 0 \) for \(\|b\| < 1 \).

Theorem 2. \(\lambda_m(b) = \kappa_m\|b\|^m + O(\|b\|^{m-1/N}) \).

One may restrict \(b \) to range over divisors \((a_i, B) \), where \(a_i \) are representatives for the ideal classes, by Remark 1; thus it suffices to consider divisors with \(a \) fixed. For \(m = 1 \), \(L_1(a, B) \) is the set of principal ideals contained in \(a \), of norm at most \(B \). Hence Theorem 2 reduces in this case to a classical theorem due to Dedekind and Weber [3].

The reduction of Theorem 1 to Theorem 2 is based on two easy observations. First, there is a bijection from \(L'_m(a, BN\alpha) \) to the set of points of \(\mathbb{P}^{m-1}(K) \) of class \(Cl(a) \), by \(UX \rightarrow K^*X \), so that the problem is to estimate \(\lambda'_m \). Second, \(L_m(a, B) = \bigcup L'_m(ab, B) \), the (disjoint) union extending over all integral ideals \(b \). Thus

\[
\lambda_m(a, B) = \sum \lambda'_m(ab, B).
\]

(The sum is finite, since \(\lambda'_m(ab, B) = 0 \) for \(N\bar{b} > BN\alpha^{-1} \), by Remark 2.) A variant of the Möbius inversion formula gives

\[
\lambda'_m(a, B) = \sum \mu(b)\lambda_m(ab, B).
\]

By Theorem 2, the sum on the right is

\[
\sum \mu(b) \left(\kappa_m \left(\frac{\|b\|}{N\bar{b}} \right)^m + O \left(\left(\frac{\|b\|}{N\bar{b}} \right)^{m-1/N} \right) \right),
\]

summed over all integral \(b \) with \(N\bar{b} \leq \|b\| = BN\alpha^{-1} \). The first term contributes

\[
\kappa_m \|b\|^m \left(\frac{1}{\zeta_K(m)} + O(\|b\|^{1-m}) \right),
\]

and the second is easily estimated to yield Theorem 1.

Bibliography