AN OBSTRUCTION TO FINITENESS OF CW-COMPLEXES

BY C. T. C. WALL

Communicated by W. S. Massey, November 4, 1963

A cell structure is a convenient means of describing a space; thus it is important to reduce such a structure to a simpler one when possible. For example, it remains unsolved whether a compact topological manifold (or more generally, ANR) has the homotopy type of a finite CW-complex. According to Milnor [2], this would follow from the conjecture that any CW-complex which is dominated by a finite complex has the homotopy type of a finite complex, but we show below that this is false.

Let \(X \) be a connected CW-complex, with universal cover \(\tilde{X} \), and fundamental group \(\pi \) with (integral) group ring \(\Lambda \). Consider the following conditions:

(i) \(X \) is dominated by a complex of finite type (i.e., one with a finite number of cells of each dimension),

(ii) \(\pi \) and all \(H_i(\tilde{X}) \) are countable,

(iii) For \(N < i \), \(H_i(\tilde{X}) = 0 \) and \(H^i(X; \mathcal{B}) = 0 \) for all coefficient bundles \(\mathcal{B} \) (in the sense of Steenrod; generalised to non-abelian coefficients if \(i = 2 \)).

Our results are as follows:

(A) If (i) holds, \(X \) is homotopy equivalent to a complex of finite type.

(B) If \(\Lambda \) is noetherian, (i) is equivalent to: \(\pi \) is finitely presented, and all \(H_i(\tilde{X}) \) are finitely generated \(\Lambda \)-modules.

(C) If \(X \) is dominated by a countable complex, it is homotopy equivalent to one; this condition is equivalent to (ii).

(E) If (iii) holds, and \(N \neq 2 \), \(X \) has the homotopy type of an \(N \)-dimensional complex, countable if (ii) holds.

(F) \(X \) is dominated by a finite complex if and only if (i) and some (iii)\(N \) hold. When this is the case, and \(N \geq 2 \), there is an obstruction \(\theta(X) \) in the projective class group \(\mathcal{K}^0(\Lambda) \), which depends only on the homotopy type of \(X \), and is zero for \(X \) finite. If \(\theta(X) = 0 \), \(X \) has the homotopy type of a finite complex of dimension \(N \).

The proofs are mostly by induction; we obtain complexes \(K^r \) and \(r \)-connected maps \(\phi: K \rightarrow X \), where \(K \) is finite in (A), countable in (C). We then prove that \(\pi_{r+1}(\phi) \) is finitely generated (over \(\Lambda \)) in (A),
and countable in (C), and that we can always use a set of \(\Lambda \)-generators \((r \geq 2) \) of \(\pi_{r+1}(\phi) \) to attach \((r+1)\)-cells to \(K \), and extend \(\phi \) over them, to obtain an \((r+1)\)-connected map. If \(X \) satisfies (iii)\(_N\), and \(r = N - 1 \), then \(\pi_N(\phi) \) is a projective \(\Lambda \)-module; when it is free, the process above gives a homotopy equivalence.

The crucial step in the proof of (A), which is used again in (F) in showing that \(\theta(X) \) is well defined, is the following lemma of Whitehead [5]:

Let \(P \) be a finite connected complex, \(K \) a connected subcomplex with \(\pi_r(P, K) = 0 \) for \(1 \leq r < n \). Then there is a formal deformation (and so homotopy equivalence) \(D: P \rightarrow Q \) rel \(K \) such that for \(r < n \), \(Q \) has no \(r \)-cells outside \(K \), and for \(r \geq n + 2 \), \(Q \) has the same number of \(r \)-cells outside \(K \) as \(P \) does.

We observe that there is an interesting analogy between our obstruction in \(K^0(\Lambda) \) (which is the Grothendieck group of finitely generated projective modulo free modules) to existence of finite complexes equivalent to \(X \), and Whitehead's obstruction in \(K^1(\Lambda) \) (reduced by \(\pm \pi \)) to their uniqueness up to formal deformation [5]. We refer the reader to Bass and Schanuel [1] for the relation between \(K^0(\Lambda) \) and \(K^1(\Lambda) \).

According to Swan [4], \(K^0(\Lambda) \) is finite, if \(\pi \) is, and by Rim [3], if \(\pi \) is cyclic of prime order, \(K^0(\Lambda) \) is isomorphic to the ideal class group of the corresponding cyclotomic field. This gives several examples both of zero and of nonzero \(K^0(\Lambda) \).

The main unsatisfactory feature of the above is our inability to construct 2-dimensional complexes under appropriate hypotheses. Roughly speaking, by the time we have enough 2-cells to give relations between the generators of the fundamental group, we may have too many for the homology.

References

Trinity College, Cambridge, England