Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Ergodic properties of isometries in $L^p$ spaces $1 < p < \infty$


Author: A. Ionescu Tulcea
Journal: Bull. Amer. Math. Soc. 70 (1964), 366-371
DOI: https://doi.org/10.1090/S0002-9904-1964-11099-5
MathSciNet review: 0206207
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. S. Banach, Théorie des opérations linéaires, Monogr. Mat., Warsaw, 1932.
  • 2. R. V. Chacon, A class of linear transformations, Proc. Amer. Math. Soc. (to appear). MR 165071
  • 3. N. Dunford and J. T. Schwartz, Linear operators, I, Interscience, New York, 1958.
  • 4. P. R. Halmos, Measure theory, Van Nostrand, New York, 1950. MR 33869
  • 5. A. Ionescu Tulcea, Un théorème de catégorie dans la théorie ergodique, C. R. Acad. Sci. Paris 257 (1963), 18-20. MR 154964
  • 6. A. Ionescu Tulcea, On the category of certain classes of transformations in ergodic theory, Trans. Amer. Math. Soc. (to appear). MR 179327
  • 7. J. Lamperti, On the isometries of certain function spaces, Pacific J. Math. 8 (1958), 459-466. MR 105017
  • 8. E. M. Stein, On the maximal ergodic theorem, Proc. Nat. Acad. Sci. 47 (1961), 1894-1897. MR 131517
  • 9. F. B. Wright, The converse of the individual ergodic theorem, Proc. Amer. Math. Soc. 11 (1960), 415-420. MR 117318


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1964-11099-5

American Mathematical Society