INVARIANT DOMAINS FOR KLEINIAN GROUPS1

BY R. ACCOLA

Communicated by Lipman Bers, December 2, 1963

If the limit set, Σ, of a properly discontinuous group, Γ, of fractional linear transformations of the Riemann sphere, S, contains more than two points, call Γ Kleinian. Otherwise, call Γ elementary.

Let $\{\Omega_i\}$ be an enumeration of the components of Ω, the set of discontinuity. If O is a domain in S, i.e., O is open and connected, let $\Gamma(O)$ be the subgroup of Γ of elements which map O onto itself. If $\Gamma(O) = \Gamma$, call O an invariant domain. If $\Gamma(\Omega_i) = \{\text{id}\}$, call Ω_i an atom.

Theorem 1. If Γ possesses three disjoint invariant domains then Γ is cyclic.

Theorem 2. Suppose Γ possesses an invariant component Ω_0. If $0 \neq i \neq j \neq 0$, then $\Gamma(\Omega_i) \cap \Gamma(\Omega_j)$ is a nonloxodromic and nonhyperbolic cyclic group. If Ω_0 is simply connected this latter group is nonelliptic.

Theorem 3. If Γ is a Kleinian group with two disjoint invariant domains, then there exists a maximal pair of disjoint invariant domains each of which is simply connected. All noninvariant components of Ω are atoms.

The author is grateful to Leon Greenberg for pointing out how the next theorem follows from the methods used in proving the previous theorems and, essentially, from a deep theorem of Nielsen and Fenchel2 on Fuchsian groups.

Theorem 4. If O_1 and O_2 are a maximal pair of disjoint invariant domains for a Kleinian group, Γ, then O_1/Γ and O_2/Γ are homeomorphic surfaces.

Examples are given where (a) Ω and Σ are both connected and (b) where Γ possesses two invariant components and atoms.

The proofs follow from remarks of which the following are typical.

1. A closed set, invariant under Γ, contains Σ.
2. The components of the complement of a closed connected set are simply connected.
3. If O is a simply connected domain invariant under a loxodromic transformation, T, then there is a Jordan arc in O invariant under T.

1 Research supported by the Office of Naval Research.

2 Added in proof. O_1 and O_2 are a maximal pair of disjoint invariant domains if whenever O_i' and O_j' are a pair of disjoint invariant domains such that $O_i \subset O_i'$, then $\Omega_i = O_i'$ for $i = 1, 2$.

412
DIFFERENTIABLE NORMS IN BANACH SPACES

BY GUILLERMO RESTREPO

Communicated by W. Rudin, January 20, 1964

1. Introduction. In [4, p. 28] S. Lang has asked whether or not a separable Banach space has an admissible norm of class \(C^1 \). In this note we indicate a proof of the following theorem, which characterizes those Banach spaces for which such a norm exists.

Theorem 1. A separable Banach space has an admissible norm of class \(C^1 \) if and only if its dual is separable.

It follows from this theorem that not even \(C(I) \) possesses an admissible differentiable norm.

2. Preliminaries. Let \(X \) be a Banach space with norm \(\alpha \); we write

\[S_\alpha = \{ x \mid \alpha(x) = 1 \} \quad \text{and} \quad B_\alpha = \{ x \mid \alpha(x) \leq 1 \}. \]

A norm in \(X \) is admissible if it induces the same topology as does \(\alpha \). The dual space is written \(X^* \) and the norm dual to \(\alpha \) is denoted by \(\alpha^* \). An \(f \in X^* \) is called a support functional to \(B_\alpha \) at \(x \in S_\alpha \) if \(\alpha^*(f) = f \cdot x \); if \(f \) has norm 1, it is called a normalized support functional and is written \(\nu_x \). A norm is smooth if there is a unique normalized support functional to \(B_\alpha \) at each \(x \in S_\alpha \). The norm \(\alpha \) is differentiable at \(x \neq 0 \) if there is an \(\alpha'(x) \in X^* \) such that

\[
\lim_{y \to x; y
eq x} \frac{|\alpha(y) - \alpha(x) - \alpha'(x) \cdot (y - x)|}{\alpha(y - x)} = 0
\]

connecting the fixed points of \(T \). (4) If \(O_1 \) and \(O_2 \) are disjoint simply connected domains invariant under a loxodromic \(T \), the corresponding arcs, as in (3), divide \(S \) into two Jordan regions, one or the other of which must contain any domain disjoint from \(O_1 \) and \(O_2 \). (5) If \(O \) is a simply connected domain invariant under an elliptic \(T \), then \(O \) must contain a fixed point of \(T \).

Brown University

1 Research partially supported by NSF Grant G-24471.