DIFFERENTIABLE NORMS IN BANACH SPACES

BY GUILLERMO RESTREPO

Communicated by W. Rudin, January 20, 1964

1. Introduction. In [4, p. 28] S. Lang has asked whether or not a separable Banach space has an admissible norm of class C^1. In this note we indicate a proof of the following theorem, which characterizes those Banach spaces for which such a norm exists.

Theorem 1. A separable Banach space has an admissible norm of class C^1 if and only if its dual is separable.

It follows from this theorem that not even $C(I)$ possesses an admissible differentiable norm.

2. Preliminaries. Let X be a Banach space with norm α; we write $S_\alpha = \{x | \alpha(x) = 1\}$ and $B_\alpha = \{x | \alpha(x) \leq 1\}$. A norm in X is admissible if it induces the same topology as does α. The dual space is written X^* and the norm dual to α is denoted by α^*. An $f \in X^*$ is called a support functional to B_α at $x \in S_\alpha$ if $\alpha^*(f) = f \cdot x$; if f has norm 1, it is called a normalized support functional and is written ν_x. A norm is smooth if there is a unique normalized support functional at each $x \in S_\alpha$. The norm α is differentiable at $x \neq 0$ if there is an $\alpha'(x) \in X^*$ such that

$$\lim_{y \to x; y \neq x} \frac{|\alpha(y) - \alpha(x) - \alpha'(x) \cdot (y - x)|}{\alpha(y - x)} = 0$$

1 Research partially supported by NSF Grant G-24471.
and a norm differentiable at each \(x \in X - \{0\} \) is of class \(C^1 \) if the map \(\alpha': X - \{0\} \to X^* \), defined by \(x \mapsto \alpha'(x) \), is continuous. The following two results are well known:

1. Klee [3]. Let \(X \) and \(X^* \) be separable. Then there exists an admissible norm \(\alpha \) in \(X \) such that \(\alpha^* \) is strictly convex, and such that whenever a sequence \(\{f_n\} \) in \(X^* \) converges to \(f \in X^* \) in the \(w^* \)-topology, then \(\alpha^*(f_n) \to \alpha^*(f) \) implies \(\alpha^*(f - f_n) \to 0. \)

2. Bishop-Phelps [1]. In any Banach space \(X \), the set of all the support functionals to \(B_\alpha \) is dense in \(X^* \).

3. Proof of Theorem 1. It is not difficult to see that if the norm \(\alpha \) is differentiate at \(x \in S_\alpha \), then \(\alpha'(x) = \nu_x \) is a normalized support functional to \(B_\alpha \) at \(x \), and is unique. The map \(x \mapsto \nu_x \) of \(S_\alpha \) into \(S_\alpha^* \) is denoted by \(\mu \). We first establish the following general theorem:

Theorem 2. (a) If \(\alpha \) is a smooth norm in \(X \), then the map \(\mu \) is continuous when the norm topology is used in \(X \) and the \(w^* \)-topology is used in \(X^* \).

(b) The norm \(\alpha \) is of class \(C^1 \) if and only if the map \(\mu \) is continuous in the norm topologies.

(c) A norm is of class \(C^1 \) if and only if it is differentiable at every point of \(S_\alpha \).

Complete details will be published elsewhere; using this result, we prove Theorem 1 as follows:

Assume \(X^* \) is separable, and let \(\alpha \) be the norm of Klee’s theorem. By a well-known duality, \(\alpha \) is smooth. Theorem 2(a) assures \(\mu \) is continuous with the \(w^* \)-topology in \(X^* \), and then Klee’s theorem shows \(\mu \) is continuous in the norm topology. By Theorem 2(b), \(\alpha \) is therefore of class \(C^1 \).

Assume now that \(\alpha \) is of class \(C^1 \). Extend the continuous map \(\mu \) to a continuous \(\hat{\mu}: X - \{0\} \to X^* \) by setting \(\hat{\mu}(x) = \alpha(x) \cdot \nu_x(x/\alpha(x)). \) The image of \(\hat{\mu} \) evidently contains the set of all the support functionals to \(B_\alpha \), and an application of the Bishop-Phelps theorem shows at once that \(X^* \) is separable whenever \(X \) is separable.

Bibliography

University of Southern California