LOCALLY FLAT STRINGS

BY CHARLES GREATHOUSE

Communicated by M. L. Curtis, February 4, 1964

I. The Schoenflies Theorem for strings. In [1], Stallings defines a string of type \((n, k)\) to be a pair \((R^n, Y)\), where \(Y\) is a closed subset of \(R^n\) such that \(Y\) is homeomorphic to \(R^k\). Similarly, he defines a pair \((S^n, X)\), where \(X\) is homeomorphic to \(S^k\), to be a knot of type \((n, k)\). A pair \((A, X)\) of \((n, k)\)-manifolds is said to be locally smooth if each point of \(X\) has a neighborhood \(U\) in \(A\) such that the pair \((U, U\cap X)\) is homeomorphic to the pair \((R^n, R^k)\). Thus, his definition of locally smooth is equivalent to Brown's [2] definition of locally flat.

Let \((R^n, F)\) be a locally smooth string of type \((n, n-1)\); \(F\) separates \(R^n\) into two components whose closures are \(A\) and \(B\). In [1], Stallings states that it seems possible that either \(A\) or \(B\) must be homeomorphic to a closed half-space of \(R^n\). Harrold and Moise [3] have proved this for \(n=3\). In this note we observe that both \(A\) and \(B\) are closed half-spaces of \(R^n\) for \(n>3\) and hence we have a Schoenflies theorem for strings of type \((n, n-1)\) for \(n>3\).

Theorem 1.1. Let \((R^n, Y)\) be a locally flat string of type \((n, n-1)\) and let \(A\) and \(B\) be the closures of the complementary domains of \(Y\) in \(R^n\). Then \(A\) and \(B\) are homeomorphic to a closed half-space of \(R^n\) for \(n>3\).

Corollary 1.2. Let \((R^n, Y)\) be a locally flat string of type \((n, n-1)\) for \(n>3\). Then \((R^n, Y)\) is trivial, that is, there is a homeomorphism \(h\) of \((R^n, Y)\) onto \((R^n, R^{n-1}\times\{0\})\).

Corollary 1.3. Let \(f_1, f_2\) be two locally flat embeddings of \(R^{n-1}\) as a closed subset of \(R^n\) for \(n>3\). Then there is a homeomorphism \(h\) of \(R^n\) onto \(R^n\) such that \(hf_1=f_2\).

Theorem 1.1 follows immediately from a recent result of Cantrell's [4]. Cantrell showed that a knot \((S^n, Y)\) of type \((n, n-1)\) is trivial for \(n>3\) provided \(Y\) is locally flat except at one point. Thus, if \((R^n, X)\) is a locally flat string of type \((n, n-1)\) and \((S^n, Y)\) is the one point compactification of \((R^n, X)\), \(Y\) is locally flat except at the compactification point. Hence \((S^n, Y)\) is trivial for \(n>3\) and Theorem 1.1 follows.

II. The Slab Conjecture. In this section we consider the relationship of locally flat strings of type \((n, n-1)\) to the Annulus Conjecture. We now state the Annulus Conjecture.
II.1. The Annulus Conjecture. Let S_1^{n-1}, S_2^{n-1} be two disjoint locally flat $n-1$ spheres embedded in S^n. Then the submanifold M of S^n bounded by $S_1^{n-1} \cup S_2^{n-1}$ is homeomorphic to $S^{n-1} \times [0, 1]$.

Although the Annulus Conjecture is unsolved for $n > 3$, the following theorem which is well known but does not seem to be in print holds.

Theorem II.2. Let S_1^{n-1}, S_2^{n-1} be two disjoint locally flat $n-1$ spheres embedded in S^n. Then if M is the submanifold of S^n bounded by $S_1^{n-1} \cup S_2^{n-1}$ and $M_i = M - S_i^{n-1}$, M_i is homeomorphic to $S^{n-1} \times [0, 1]$ for $i = 1, 2$.

Proof. Let A_i be the closed n-cell [2] with boundary S_i^{n-1} such that $A_i \cap M = S_i^{n-1}$ for $i = 1, 2$. A_i is cellular and hence by Theorem I of [5], S^n/A_i is homeomorphic to S^n and the theorem follows.

A theorem analogous to Theorem II.2 holds for locally flat strings of type $(n, n-1)$ for $n > 3$.

Theorem II.3. Let R_1^{n-1}, R_2^{n-1} be two disjoint locally flat $n-1$ planes embedded as closed subsets of R^n for $n > 3$. Then if M is the submanifold of R^n bounded by $R_1^{n-1} \cup R_2^{n-1}$ and $M_i = M - R_i^{n-1}$, M_i is homeomorphic to $R^{n-1} \times [0, 1]$ for $i = 1, 2$.

Proof. In view of Corollary I.2, we may assume that $R_1^{n-1} = R^{n-1} \times 0$ and $R_2^{n-1} \subset R^{n-1} \times (0, \infty)$. Let A_2 be the closed half-space (by Theorem I.1) of R^n bounded by R_2^{n-1} which does not contain R_1^{n-1}. By Theorem I.1, $R^n - A_2$ is homeomorphic to R^n and hence by the same theorem M_2 is homeomorphic to $R^{n-1} \times [0, 1)$. Similarly, M_1 is homeomorphic to $R^{n-1} \times [0, 1)$.

We now state the Slab Conjecture.

II.4. The Slab Conjecture. Let R_1^{n-1}, R_2^{n-1} be disjoint locally flat $n-1$ planes embedded as closed subsets of R^n. Then if M is the submanifold of R^n bounded by $R_1^{n-1} \cup R_2^{n-1}$, M is homeomorphic to $R^{n-1} \times [0, 1]$.

It should be noted that the Slab Conjecture is false in dimension 3. A counterexample can be obtained as follows. Let S_1^2 be the 2-sphere boundary of a 3-cell obtained by "swelling" a Fox-Artin arc (Example 1.2) [6]. We may assume that S_1^2 is contained in the unit 3-ball B^3 of S^3, that $S_1^2 \cap B^3 = \varnothing$, and that S_1^2 is locally flat at each point other than p. Let $S_2^3 = B^3 \setminus p$, $R_2^2 = S_2^2 - p$ and $R_2^2 = S_2^2 - p$. Then R_2^3, R_2^2 are disjoint locally flat 2-planes embedded as closed subsets of $R^3 = S^3 - p$. The 3-dimensional Slab Conjecture would imply that the closure of the complementary domain of S_1^3 in S^3 containing R_2^2 is a closed 3-cell which is a contradiction since S_1^3 is wild in S^3.
The Slab Conjecture is unsolved for \(n > 3 \) and the following theorem indicates that it is possibly stronger than the Annulus Conjecture.

Theorem II.5. The Slab Conjecture implies the Annulus Conjecture for \(n > 3 \).

Proof. Let \(S_1^{n-1}, S_2^{n-1} \) be disjoint locally flat \(n-1 \) spheres embedded in \(S^n \). In view of Brown's theorem \([2]\), we may assume that \(S_1^{n-1} = \) the equator of \(S^n \) and \(S_2^{n-1} \) lies in the northern hemisphere of \(S^n \). Now there is a unique \(n-1 \) sphere \(S_\beta^{n-1} \) with the following properties:

1. \(S_\beta^{n-1} \) lies in the northern hemisphere of \(S^n \).
2. \(S_\beta^{n-1} \) is concentric with \(S^{n-1} = \) the equator of \(S^n \).
3. \(S_\beta^{n-1} \cap S_2^{n-1} \) is not empty.
4. The half-open annulus bounded by \(S^{n-1} \cup S_\beta^{n-1} \) but not containing \(S_\beta^{n-1} \) does not intersect \(S_2^{n-1} \).

Let \(p \in S_\beta^{n-1} \cap S_2^{n-1} \) and let \(D^{n-1} \) be the standard unit \(n-1 \) cell in \(S^{n-1} \) with center \(p' \) where \(p' \) and \(p \) lie on a great circle passing through the north pole. Let \(C \) be the cone over the base \(\hat{D}^{n-1} \) with vertex \(p \). Then \([S_\beta^{n-1} - \text{Int}(D^{n-1})] \cup C = S_3^{n-1} \) is a locally flat \(n-1 \) sphere such that \(S_3^{n-1} \cap S_2^{n-1} = p \).

If we define \(R_1^{n-1} = S_\beta^{n-1} - p \) and \(R_2^{n-1} = S_2^{n-1} - p \), then \(R_1^{n-1}, R_2^{n-1} \) are disjoint locally flat \(n-1 \) planes embedded as closed subsets of \(S^n - p = R^n \). By the Slab Conjecture, the submanifold \(N^n \) bounded by \(R_1^{n-1} \cup R_2^{n-1} \) in \(R^n \) is homeomorphic to \(R^{n-1} \times [0, 1] \). Hence, there is a homeomorphism \(h \) of \(N^n \) onto \(R^{n-1} \times [0, 1] \) where \(h(R_1^{n-1}) = R^{n-1} \times 0 \) and \(h(R_2^{n-1}) = R^{n-1} \times 1 \). Since \(\hat{D}^{n-1} \) is a flat \(n-2 \) sphere in \(R_1^{n-1} \), \(h(\hat{D}^{n-1}) \) is a flat \(n-2 \) sphere in \(R^{n-1} \times 0 \). Therefore, there is a homeomorphism \(g \) of \(R^{n-1} \times 0 \) onto itself such that \(gh(\hat{D}^{n-1}) \) is the standard unit \(n-2 \) sphere \(S_1^{n-2} \) in \(R^{n-1} \times 0 \). \(g \) extends naturally to a homeomorphism \(G \) of \(R^{n-1} \times [0, 1] \) onto itself by \(G(x, t) = (g(x), t) \). Then \(k = Gh \) is a homeomorphism of \(N^n \) onto \(R^{n-1} \times [0, 1] \) such that \(k(D^{n-1}) \) is the standard unit \(n-2 \) sphere \(S_1^{n-2} \) in \(R^{n-1} \times 0 \). \(g \) extends uniquely to a homeomorphism \(j \) of \(R^{n-1} \times [0, 1] \) onto \(L^n \) such that \(j(R^{n-1} \times 1) = (S^{n-1} \times 1) - q' \) and \(j(R^{n-1} \times 0) = [(S^{n-1} \times 0) - \text{Int}(B^{n-1})] \cup (C' - q') \) and \(j(S_1^{n-2}) = \hat{B}^{n-1} \). Then \(f = jk \) is a homeomorphism of \(N^n \) onto \(L^n \) such that \(f(\hat{D}^{n-1}) = \hat{B}^{n-1} \). \(f \) extends uniquely to a homeomor-
phism F of $N^n \cup p$ onto $L^n \cup q'$ by taking $F(p) = q'$.

Finally, let M be the submanifold of S^n bounded by $S_1^{n-1} \cup S_2^{n-1}$. Since $F(C) = C'$, F extends to a homeomorphism of M onto A^n by extending first to take D^{n-1} onto B^{n-1} and finally extending to take the n-cell bounded by $C \cup D^{n-1}$ onto F^n. Thus, M is homeomorphic to $S^{n-1} \times [0, 1]$ and the theorem is proved.

It does not seem obvious that the Annulus Conjecture implies the Slab Conjecture for $n > 3$.

References

University of Tennessee