Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Harmonic analysis and the theory of cochains


Author: Victor L. Shapiro
Journal: Bull. Amer. Math. Soc. 70 (1964), 447-467
DOI: https://doi.org/10.1090/S0002-9904-1964-11151-4
MathSciNet review: 0166335
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. S. Bochner, Harmonic analysis and the theory of probability, Univ. of Calif. Press, Berkeley and Los Angeles, Calif., 1955. MR 72370
  • 2. S. Bochner and K. Chandrasekharan, Fourier transforms, Annals of Mathematics Studies, No. 19, Princeton Univ. Press, Princeton, N. J., 1949. MR 31582
  • 3. S. Saks, Theory of the integral, Monografie Matematyczne, Vol. 7, Warsaw, 1937.
  • 4. V. L. Shapiro, The divergence theorem for discontinuous vector fields, Ann. of Math. (2) 68 (1958), 604-624. MR 100725
  • 5. V. L. Shapiro, Topics in Fourier and geometric analysis, Mem. Amer. Math. Soc. No. 39, (1961), 100 pp. MR 147826
  • 6. V. L. Shapiro, Symmetric exterior differentiation and flat forms, Canad. J. Math. 14 (1962), 79-86. MR 131518
  • 7. H. Whitney, Geometric integration theory, Princeton Univ. Press, Princeton, N. J., 1957. MR 87148


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1964-11151-4

American Mathematical Society