DEMICONTINUITY, HEMICONTINUITY AND MONOTONICITY

BY TOSIO KATO

Communicated by F. Browder, March 12, 1964

Recently the notions of monotone, demicontinuous and hemicontinuous functions have been introduced in connection with nonlinear problems in functional analysis (Browder [1; 2; 3; 4; 5], Minty [6; 7; 8]). The object of the present note is to show that under rather general conditions, hemicontinuity is equivalent to demicontinuity for monotone functions.

Let X be a (real or complex) Banach space and X^* its adjoint space as the set of all bounded conjugate-linear functionals on X. The value of $f \in X^*$ at $u \in X$ is denoted by (f, u). We use the notations \to and \rightharpoonup for strong convergence in X (or in X^* or in the set of real numbers) and weak* convergence in X^*, respectively.

Let G be a function from X to X^* with domain $D=D(G) \subset X$. G is said to be demicontinuous if $u_n \in D$, $n=1, 2, 3, \ldots$, $u \in D$ and $u_n \rightharpoonup u$ imply $G(u_n) \rightharpoonup Gu$. G is hemicontinuous if $u \in D$, $v \in X$ and $u + t_n v \in D$, where t_n is a sequence of positive numbers such that $t_n \to 0$, imply $G(u + t_n v) \to Gu$. We shall say that G is locally bounded if $u_n \in D$, $u \in D$ and $u_n \to u$ imply that Gu_n is bounded. Obviously a demicontinuous function is hemicontinuous and locally bounded.

G is said to be monotone if $\Re(Gu - Gv, u - v) \geq 0$ for $u, v \in D$.

These definitions may be void if D is too arbitrary. In what follows we shall assume that D is quasi-dense. By this we mean that for each $u \in D$ there is a dense subset M_u of X such that for each $v \in M_u$, $u + tv \in D$ for sufficiently small $t>0$ (the smallness of t depending on v). Thus any open subset of X as well as any dense linear manifold of X is quasi-dense.

Theorem 1. Let G be a monotone function from X to X^* with a quasi-dense domain D. Then G is demicontinuous if and only if it is hemicontinuous and locally bounded.

Proof. By the remark given above, it suffices to prove the "if" part. Suppose G is hemicontinuous and locally bounded. Let $u_n \to u$, $u_n, u \in D$. We have to show that $Gu_n \rightharpoonup Gu$. Obviously we may assume that $u_n \neq u$.

Let M_u be the dense subset of X used in the definition of D being quasi-dense. Let $v \in M_u$ and $t_n = \|u_n - v\|^{1/2}$. Then $t_n > 0$, $t_n \to 0$, $w_n = u + t_nv \in D$ for sufficiently large n and
DEMICONTINUITY, HEMICONTINUITY AND MONOTONICITY

(1) \(Gw_n \rightarrow Gu \).

Now the monotonicity of \(G \) implies

(2) \(0 \leq \text{Re}(Gu_n - Gw_n, u_n - w_n) = \text{Re}(Gu_n - Gw_n, u_n - u - t_n v) \).

\(Gu_n \) is bounded since \(G \) is locally bounded. \(Gw_n \) is bounded by (1). Hence

\[
\lim_{t_n \to 0} \frac{1}{t_n} \text{Re}(Gu_n - Gw_n, u_n - u) \to 0
\]

because \(\|t_n^{-1}(u_n - u)\| = t_n \to 0 \). Also \((Gw_n, v) \to (Gu, v)\) by (1). Dividing (2) by \(t_n \) and letting \(n \to \infty \), we thus obtain

(3) \(\lim \inf \text{Re}(Gu_n - Gu, -v) \geq 0 \).

(3) is true for any \(v \in M_u \). Since \(M_u \) is dense in \(X \) and \(Gu_n \) is bounded in \(X^* \), it follows that (3) is true for every \(v \in X \). Replacing \(v \) by \(-v \) (and also by \(\pm iv \) if \(X \) is complex) and putting the results together, we obtain

\[
\lim (Gu_n - Gu, v) = 0, \quad v \in X.
\]

This proves that \(Gu_n \to Gu \), q.e.d.

REMARK 1. Theorem 1 shows that a monotone hemicontinuous function that maps bounded sets into bounded sets is a notion stronger than a monotone demicontinuous function. (Such functions are considered in \([2-III]\) and \([5]\).)

REMARK 2. It is not clear whether the assumption of local boundedness in Theorem 1 can be eliminated. But this is the case if \(X \) is finite-dimensional. We have namely

Theorem 2. Let \(X \) be a finite-dimensional Banach space. Let \(G \) be a monotone function from \(X \) to \(X^* \) with a quasi-dense domain \(D \). Then \(G \) is continuous if and only if it is hemicontinuous.

Proof. Since continuity and demicontinuity are equivalent when \(X \) is finite-dimensional, it suffices to show that \(G \) is locally bounded if it is hemicontinuous; then the result follows from Theorem 1.

Suppose that \(G \) is hemicontinuous but not locally bounded. Then there is a \(u \in D \) and a sequence \(u_n \in D \) such that \(u_n \to u \) but \(Gu_n \) is unbounded. We may assume without loss of generality that \(\|Gu_n\| = s_n \to \infty \). Let \(M_u \) be as above and let \(v \in M_u \). Take a \(t > 0 \) so small that \(u + tv \in D \). Then by monotonicity

\[
0 \leq s_n^{-1} \text{Re}(Gu_n - G(u + tv), u_n - u - tv)
\]

(4) \(= \text{Re}(s_n^{-1}Gu_n - s_n^{-1}G(u + tv), u_n - u - tv) \).
Now $s_n^{-1}G(u + tv) \to 0$, $u_n - u \to 0$ and $s_n^{-1}Gu_n$ is bounded. On dividing (4) by $t > 0$ and letting $n \to \infty$, we thus obtain

$$\lim \inf \Re(s_n^{-1}Gu_n, -v) \geq 0.$$

As in the proof of Theorem 1, this leads to the result that $s_n^{-1}Gu_n \to 0$. But this is a contradiction, for $\|s_n^{-1}Gu_n\| = 1$ and weak* convergence is equivalent to strong convergence.

BIBLIOGRAPHY

University of California, Berkeley