THE CLOSING LEMMA AND STRUCTURAL STABILITY

BY CHARLES C. PUGH

Communicated by L. Markus, March 30, 1964

Introduction. Consider a differentiable n-manifold M. Let $\mathfrak{X} = \mathfrak{X}(M)$ be the space of all C^1 tangent vector fields on M under a C^1 topology [1]. Each $X \in \mathfrak{X}$ induces a C^1-flow on M called the X-flow. Let d be a metric on M and let ϵ be positive. Two flows are homeomorphic if there is a homeomorphism h of M onto itself taking the trajectories of one flow onto those of the other; the two flows are ϵ-homeomorphic if h can be chosen so that $d(h(p), p) < \epsilon$ for all $p \in M$. X is said to be structurally stable if, given $\epsilon > 0$, there then exists a neighborhood \mathfrak{U} of X in \mathfrak{X} such that for each $Y \in \mathfrak{U}$ the Y-flow is ϵ-homeomorphic to the X-flow. Let us say that X is crudely structurally stable if we drop the ϵ condition: X is crudely structurally stable if there exists a neighborhood \mathfrak{U} of X in \mathfrak{X} such that $Y \in \mathfrak{U}$ implies that the Y-flow is homeomorphic to the X-flow. Let Σ denote those X in \mathfrak{X} which are structurally stable and let Σ_ϵ denote those X in \mathfrak{X} which are crudely structurally stable, obviously $\Sigma \subseteq \Sigma_\epsilon$. The problem of structural stability theory is to characterize Σ and Σ_ϵ and to study the topological relation of Σ and Σ_ϵ to \mathfrak{X}.

The most comprehensive results in structural stability theory are due to M. Peixoto [2], [3], [4] who has shown, when M is a compact 2-manifold, that $\Sigma = \Sigma_\epsilon$, $\Sigma = \mathfrak{X}$, and that the fields in Σ are characterized completely as the fields with "generic" induced flows.

Related to the problem of structural stability is the following conjecture:

Closing Lemma. If the X-flow has a nontrivial recurrent trajectory through some $p \in M$ and if \mathfrak{U} is any neighborhood of X in \mathfrak{X} then there exists $Y \in \mathfrak{U}$ such that the Y-flow has a closed orbit through p.

(Recall that a trajectory is nontrivially recurrent if it is contained in its α- or in its ω-limit set without being a closed orbit or a stationary point.)

Results concerning the Closing Lemma. M. Peixoto [4] has proved the Closing Lemma in the case that M is the 2-torus and X has no
singularities. We prove the following two forms of the Closing Lemma. (Our proofs, however, are invalid for a C^r topology on \mathcal{X}, $r > 1$.)

Theorem 1. Let M be any differentiable 2-manifold and let $X \in \mathcal{X}$ have a nontrivial recurrent trajectory through $p \in M$. Let U be an arbitrarily small coordinate neighborhood of p in M and let $\epsilon > 0$ be given. Then there exists $\Delta \in \mathcal{X}$ such that

(a) Δ vanishes on $M - U$.

(b) The C^1 size of Δ respecting the coordinates of U is less than ϵ.

(c) $Y = X + \Delta$ has a closed orbit through p.

Theorem 2. Let M be a compact n-manifold and let a Riemannian metric be put on M so that the norm of each linear transformation $L: T_x(M) \to T_x(M)$ is defined. Suppose that $X \in \mathcal{X}$ induces a flow ϕ which has a nontrivial recurrent trajectory through $p \in M$. Define $J(t, x): T_x(M) \to T_{\phi(t, x)}(M)$ to be the jacobian isomorphism of tangent spaces induced by $x \to \phi(t, x)$. Suppose that $\epsilon > 0$ is given and that

$$\lim_{t \to \infty} \frac{1}{t} \| J^{-1}(t, p) \| = 0.$$

Then there exists $\Delta \in \mathcal{X}$ such that the C^1 size of Δ is less than ϵ and $Y = X + \Delta$ has a closed orbit through p.

Where M is compact, all Riemannian metrics are equivalent and so Theorem 2 does not depend on the choice of Riemannian metric.

Definition. Let X be in $\mathcal{X}(M)$ for a differentiable n-manifold M. A flow-box for X at $p \in M$ is a coordinate neighborhood U of p in M such that in terms of the coordinates (u_1, \ldots, u_n) of U, $u_i(p) = 0$ for $i = 1, 2, \ldots, n$ and

$$X_u = \left(\frac{\partial}{\partial u^i} \right)_u$$

for all u in U.

If $X_p \neq 0$, then it is well known that a flow-box for X at p exists.

The following lemma is the principal tool used to prove Theorems 1 and 2.

Lemma. Let $\epsilon > 0$ and $0 < \delta < 1$ be given. Let M be a differentiable n-manifold and let $X \in \mathcal{X}$ induce the flow ϕ. Suppose that X does not vanish at $p^* \in M$ and let U be a flow-box for X at p^*. Let

$$\Pi = \{(0, u_2, u_3, \ldots, u_n) \in U\}.$$

Suppose that P is a subset of Π such that arbitrarily near p^* there are distinct points of P lying on a common ϕ-trajectory (e.g., let $P = \mu \cap \Pi$
and let \(p^* \in \mu \cap \Pi \) where \(\mu \) is a nontrivial recurrent \(\phi \)-trajectory. Then there exist points \(p \) and \(q \) of \(P \) such that

\[
|p - p^*| < \varepsilon, \\
|q - p^*| < \varepsilon,
\]

(a)

\[
\phi(t^*, p) = q \text{ for some } t^* > 0,
\]

and

(b) \(\varepsilon \) If \(r = \phi(t', p) \in P \) for some \(t' < t^* \),

\[
|p - r| > \delta |p - q| \text{ and } |q - r| > \delta |p - q|,
\]

where \(|x - y| \) denotes the distance between \(x \) and \(y \) respecting the coordinates of \(U \).

The proof of this lemma is easy. Just take a \(p_0 \) and \(q_0 \) in \(P \) obeying (a) where \(\varepsilon \) has been replaced by the smaller constant \(\frac{1}{2}(1 - \delta) \cdot \varepsilon \) and where \(t^* \) is called \(t_0 \). If (b) fails to be true for some \(r = \phi(t', p_0) \), then suppose that \(|q_0 - r| \leq \delta |p_0 - q_0| \). Replace \(q_0 \) by \(r \) and regard the pair \((p_0, r)\) instead of the pair \((p_0, q_0)\). Call \((p_0, r) = (p_1, q_1)\). Proceed similarly if \(|q_0 - r| > \delta |p_0 - q_0| \) but \(|p_0 - r| \leq \delta |p_0 - q_0| \) to get \((p_1, q_1) = (r, q_0)\). Proceed with \((p_1, q_1)\) as was done with \((p_0, q_0)\), getting, thereby, a sequence \((p_k, q_k)\) \(k = 1, 2, \ldots \). The process ends at a finite step \((p_m, q_m)\) because \(\phi(t, p) \) crosses \(\Pi \) at most a finite number of times for \(0 \leq t \leq t_0 \). The pair \((p_m, q_m)\) satisfies (b) by construction. It also satisfies (a) because

\[
|p^* - p_m| \leq \sum_{i=1}^{m} \max(|p_i - p_{i-1}|, |q_i - q_{i-1}|) + |p_0 - p^*|
\]

\[
\leq \sum_{i=1}^{m} \delta^i |p_0 - q_0| + |p_0 - p^*|
\]

\[
< |p_0 - q_0| \cdot \frac{1}{1 - \delta} + |p_0 - p^*|
\]

\[
< \frac{\varepsilon \cdot (1 - \delta)}{2 \cdot (1 - \delta)} < \varepsilon.
\]

Similarly \(|p^* - q_m| < \varepsilon \).

As a consequence of Theorem 1, M. Peixoto's paper [4] can be shortened considerably. The methods used to prove Theorem 1 can also be used to solve the following problem.

Suppose that \(M = S^2 \), \(X \subset \mathcal{X}(S^2) \), and that the \(X \)-flow has a closed orbit \(\gamma \) which is isolated but unstable. Suppose there are \(n \) generic saddle points \(p_1, p_2, \ldots, p_n \) outside \(\gamma \) and \(n \) more generic saddle points \(q_1, q_2, \ldots, q_n \) inside \(\gamma \) such that one separatrix from each \(p_i \)
has γ as an ω-limit and one separatrix from each q_i has γ as an α-limit point. The problem is to find an arbitrarily C^1 small $\Delta \in \mathcal{X}$ such that for $Y = X + \Delta$, the Y-flow "joins the p_i's to the q_j's." That is, each p_i should have a Y-separatrix σ_i which is also a Y-separatrix of some q_j. When Δ is sufficiently C^1 small, it is easily seen that the same q_j cannot be joined to two different p_i's. M. Peixoto [4] has solved this problem for $n = 1$. The problem for $n \geq 2$ is related to an investigation of "higher order structural stability" at present being completed by G. Sottomayor. Sottomayor wishes Δ to be C^∞ small, but—as in the Closing Lemma itself—our methods only produce perturbations which are C^1 small.

I hope that Theorem 2 will yield as a corollary that distal minimal nontrivial recurrent flows on compact differentiable manifolds may be closed by arbitrarily C^1 small perturbations Δ. It would suffice to prove that for some $p \in M$, \[\|J^{-1}(t, p)\|\] is bounded as $t \to \infty$ where J is the Jacobian isomorphism induced as in Theorem 2. Roughly, the reason this should be true is that $\|J^{-1}\|$ is a measure of how fast the flow contracts and distal flows don't contract too much.

Finally, we inspect two examples related to the theory of structural stability for noncompact 2-manifolds. First we show that for $M = \mathbb{R}^2$, $\Sigma_e \neq \Sigma$. Second, following M. L. Peixoto, we see that there exists a nonvanishing $X \in \mathcal{X} (\mathbb{R}^2)$ which is not in Σ_e. This shows that it will probably be quite difficult to characterize the elements of Σ and Σ_e for noncompact 2-manifolds.

In a sense, this is unfortunate because Theorem 1 holds for noncompact differentiable 2-manifolds and one might hope to use it to try to generalize M. Peixoto's characterization theorem [4] to the noncompact case. In particular one would hope to show that $X \in \Sigma_e$ if the X-flow has a nontrivial recurrent trajectory. I can prove this if M has finite genus but if M has infinite genus, I can prove it only by using the following

Conjecture. Suppose that M is a differentiable 2-manifold and that $X \in \Sigma_e (M)$. Let Γ be the union of all the closed orbits of the X-flow. Then Γ is closed in M.

References