THE RECURSIVE EQUIVALENCE TYPE OF
A CLASS OF SETS

BY J. C. E. DEKKER

Communicated by P. R. Halmos, February 28, 1964

1. Introduction. Let us consider non-negative integers (numbers),
collections of numbers (sets) and collections of sets (classes). The
letters ϵ and \varnothing stand for the set of all numbers and the empty set
of numbers respectively. We write \subseteq for inclusion, proper or improper.
A mapping from a subset of ϵ into ϵ is called a function; if f is a func-
tion, we denote its domain and its range by δf and ρf respectively. Let
a class of mutually disjoint nonempty sets be called an md-class; such
a class is therefore countable, i.e., finite or denumerable. We recall
that the recursive equivalence type (abbreviated: RET) of a set α, denoted by $\text{Req}(\alpha)$, is defined [1, p. 69] as the class of all sets which
are recursively equivalent to α. We wish to consider the problem:
"How can we define the RET of an md-class in a natural manner?"
Throughout this note \mathcal{S} stands for an md-class and σ for the union of
all sets in \mathcal{S}; for every $x \in \sigma$ we denote the unique set α such that
$x \in \alpha \subseteq \mathcal{S}$ by α_x.

DEFINITIONS. A set γ is a choice set of \mathcal{S}, if

1. $\gamma \subseteq \sigma$,
2. γ has exactly one element in common with each set in \mathcal{S}.

The set γ is a good choice set of \mathcal{S} (abbreviated: gc-set), if it also
satisfies

3. there exists a partial recursive function $p(x)$ such that $\sigma \subseteq \delta p$
and $(\forall x)[x \in \sigma \Rightarrow p(x) \in \gamma \cdot \alpha_x]$.

Consider the special case that the md-class \mathcal{S} is a finite class of
finite sets. Then

(a) every choice set of \mathcal{S} is a good choice set,
(b) every two choice sets of \mathcal{S} are recursively equivalent,
(c) every two good choice sets of \mathcal{S} are recursively equivalent.

If the md-class \mathcal{S} is infinite, (a) and (b) need no longer be true.
For let \mathcal{S} contain infinitely many sets of cardinality ≥ 2, e.g.,
$\mathcal{S} = \{(0, 1), (2, 3), (4, 5), \ldots \}$. Then \mathcal{S} has ϵ choice sets. Every good
choice set of \mathcal{S} has the form $p(\sigma)$ for some partial recursive function
$p(x)$, hence \mathcal{S} has at most \aleph_0 good choice sets and (a) is false. Every
nonzero RET contains exactly \aleph_0 sets; the ϵ choice sets of \mathcal{S} can
therefore not all be recursively equivalent and (b) is false. On the

1 This paper was written while the author was supported by a grant from the Rut-
gers Research Council.
other hand, (c) still holds. For we have

Proposition P1. Every two good choice sets of an md-class are recursively equivalent.

Note that (a) does not even hold for every finite class consisting of two infinite sets. For let \(S = (\tau, \tau') \), where \(\tau \) and \(\tau' \) are complementary immune sets. Then \(S \) has denumerably many choice sets, but if \(S \) had a good choice set, \(\tau \) and \(\tau' \) would be recursive. For every md-class \(S \) we write \(\xi(S) \) for the class of all gc-sets of \(S \). If \(\xi(S) \) is nonempty, \(S \) is called a gc-class. The class \((\tau, \tau') \) mentioned above is an example of an md-class which is not a gc-class. P1 enables us to give the

Definition. For any gc-class \(S \),

\[
\text{RET}(S) = \text{Req}(\gamma), \quad \text{for any } \gamma \in \xi(S).
\]

If \(S \) is a finite md-class of finite sets, \(S \) is a gc-class and \(\text{RET}(S) \) equals the cardinality of \(S \). We need not exclude the trivial case that \(S \) is empty, for then \(\xi(S) \) contains exactly one set, namely \(0 \).

2. **Elementary properties.** The sets \(\alpha_0, \cdots, \alpha_n \) are separable if there exist mutually disjoint r.e. sets \(\beta_0, \cdots, \beta_n \) such that \(\alpha_i \subseteq \beta_i \) for \(0 \leq i \leq n \). We write \(\alpha_0 \mathrel{|} \alpha_1 \) if \(\alpha_0 \) and \(\alpha_1 \) are separable.

Proposition P2. The finite md-class \(S = (\alpha_0, \cdots, \alpha_n) \) is a gc-class if and only if \(\alpha_0, \cdots, \alpha_n \) are separable; if \(S \) is a gc-class, each choice set of \(S \) is a gc-set and \(\text{RET}(S) \) equals the cardinality of \(S \).

A gc-class is called isolated if each (or equivalently, at least one) of its gc-sets is isolated. In other words, a gc-class is isolated if its RET is an isol. For every nonempty gc-class \(S \) we have: \(\sigma \) is a finite set if and only if \(S \) is a finite class of finite sets. Similarly,

Proposition P3. Let \(S \) be a nonempty gc-class. Then \(\sigma \) is an isolated set if and only if \(S \) is an isolated class of isolated sets.

Two classes \(S_1 \) and \(S_2 \) with unions \(\sigma_1 \) and \(\sigma_2 \) respectively are separable if \(\sigma_1 \mathrel{|} \sigma_2 \). For any two classes \(A \) and \(B \) we write

\[
A \times B = \{ j(\alpha \times \beta) \mid \alpha \in A \text{ and } \beta \in B \},
\]

where \(j(x, y) = x + (x+y)(x+y+1)/2 \).

Proposition P4. Let \(S_1 \) and \(S_2 \) be separable md-classes. Then \(S_1 \cup S_2 \) is an md-class and

(a) \(S_1 \cup S_2 \) is a gc-class if and only if both \(S_1 \) and \(S_2 \) are gc-classes,

(b) if \(S_1 \cup S_2 \) is a gc-class, \(\text{RET}(S_1 \cup S_2) = \text{RET}(S_1) + \text{RET}(S_2) \).
PROPOSITION P5. Let S_1 and S_2 be nonempty md-classes. Then $S_1 \times S_2$ is a nonempty md-class and

(a) $S_1 \times S_2$ is a gc-class if and only if both S_1 and S_2 are gc-classes,
(b) if $S_1 \times S_2$ is a gc-class, $\text{RET}(S_1 \times S_2) = \text{RET}(S_1) \cdot \text{RET}(S_2)$.

3. The class $\text{Bin}(\alpha)$. Let $\{\rho_n\}$ be the canonical enumeration of the class of all finite sets [2, p. 81] and $r_n =$ cardinality of ρ_n. For any set α and any number k we write

$$C(\alpha, k) = \{n \mid \rho_n \subset \alpha \text{ and } r_n = k\}, \quad \text{Bin}(\alpha) = \{C(\alpha, k) \mid k \geq 1\}.$$

Note that $\text{Bin}(\alpha)$ is an md-class for any set α; if α is a finite set of cardinality n, the members of $\text{Bin}(\alpha)$ are separable and $\text{Bin}(\alpha)$ is a gc-class with n as cardinality and RET. For any infinite set α, $\text{Bin}(\alpha)$ is a denumerable md-class of infinite sets; the next proposition tells us when $\text{Bin}(\alpha)$ is a gc-class. We write $\text{Req}(\epsilon) = R$ and refer to [2, pp. 80, 84] for the definition of a regressive set and a regressive isol.

PROPOSITION P6. Let α be infinite and $A = \text{Req}(\alpha)$. Then

(a) if α has an infinite r.e. subset, $\text{Bin}(\alpha)$ is a gc-class of RET R,
(b) if α is a regressive set, $\text{Bin}(\alpha)$ is a gc-class of RET A,
(c) if α is immune, but not regressive, $\text{Bin}(\alpha)$ is not a gc-class.

It follows that among the c existing md-classes of immune sets, exactly c are gc-classes and exactly c are not. It is shown in [3] that though the collection Δ_R of all regressive isols is not closed under addition one multiplication, one can extend the $\text{min}(\langle x, y \rangle)$ function from \mathcal{E} into ϵ in a natural manner to a $\text{min}(X, Y)$ function from Δ_R into Δ_R. However, $\text{min}(X, Y)$ need no longer assume one of the values X and Y.

PROPOSITION P7. Let α, β be two nonempty isolated sets, $A = \text{Req}(\alpha)$ $B = \text{Req}(\beta)$ and

$$S = \{j(\xi \times \eta) \mid (\exists n)(n \geq 1 \text{ and } \xi = C(\alpha, n) \text{ and } \eta = C(\beta, n))\}.$$

If α and β are regressive, i.e., $A, B \subseteq \Delta_R$ then S is a gc-class with $\text{RET}(S) = \text{min}(A, B)$.

It can be shown that S may be a gc-class while the sets α and β are immune, but not both regressive.

DEFINITIONS. Let $p(x)$ be a partial recursive function and S a gc-class. Then $p(x)$ is a gc-function of S, if
(α) $\sigma \subseteq \delta p$ and $p(\sigma) \in \xi(S)$,
(β) $(\forall x)[x \in \sigma \Rightarrow p(x) \in p(\sigma) \cdot \alpha]$,
(γ) $\rho p \subseteq \delta p$ and $(\forall x)[x \in \delta p \Rightarrow p^2(x) = p(x)]$.

A gc-function is a partial recursive function which is a gc-function of at least one gc-class.

Every gc-class has at least one gc-function. For if a partial recursive function $p(x)$ is related to S by (α) and (β), then $p(x)$ has a restriction which satisfies (α), (β) and (γ). With every partial recursive function $p(x)$ we associate the md-class $Gen(p) = \{p^{-1}(y) \mid y \in p p\}$ of r.e. sets. This md-class is empty if and only if $p(x)$ is nowhere defined.

Proposition P8. A partial recursive function $p(x)$ is a gc-function if and only if it satisfies (γ). Moreover, if $p(x)$ satisfies (γ), it is a gc-function of the class $S = \text{Gen}(p)$ with $\sigma = \delta p$ and $p(\sigma) = p p \in \xi(S)$.

Proposition P9. Let $p(x)$ be a gc-function of the gc-class S. Then

$$\delta p = \sigma \Leftrightarrow S = \text{Gen}(p).$$

Definition I. A class S is primitive, if it satisfies one of the three conditions: (i) S is empty, (ii) S is a nonempty, finite md-class of r.e. sets, (iii) S is a denumerable md-class of r.e. sets and there exists a recursive function $a(n, x)$ such that if $\alpha_n = pa(n, x)$, then S consists of the distinct sets $\alpha_0, \alpha_1, \cdots$.

Definition II. A class S is primitive, if it is a gc-class with a gc-function $p(x)$ such that $S = \text{Gen}(p)$.

Definition III. A class S is primitive, if $S = \text{Gen}(p)$ for some partial recursive function $p(x)$.

Proposition P10. The three definitions of a primitive class are equivalent.

Corollary. A class S is primitive if and only if it is a gc-class with a gc-function $p(x)$ such that $\delta p = \sigma$.

Definition. An md-class T is a restriction of the gc-class S, if

(a) for every $\beta \in T$, there is an α_β such that $\beta \subseteq \alpha_\beta \subseteq S$,
(b) there is a $\gamma \in \xi(S)$ such that $\beta \in T \Rightarrow \gamma \cdot \alpha_\beta \subseteq \beta$.

Proposition P11. An md-class is a gc-class if and only if it is a restriction of some primitive gc-class.

While there are c gc-classes, only \aleph_0 of them are primitive. For each RET A there exists a gc-class with A as its RET, but a primitive class can only have one of $0, 1, \cdots, R$ as its RET. The gc-sets of a primitive class P are readily characterized. For if P is finite, the gc-sets of P are the choice sets of P, and if P is infinite, say
J. C. E. DEKKER

\[P = (\alpha_0, \alpha_1, \cdots), \quad \alpha_n = pa(n, x), \]

\(a(n, x) \) a recursive function, then \(\gamma \in \xi(p) \) if and only if \(\gamma = pa(f_n, u_n) \), for a recursive permutation \(f_n \) and a recursive function \(u_n \). Finally, the restrictions of any given primitive class can be simply described. Thus Proposition P11 serves a purpose.

REFERENCES

RUTGERS, THE STATE UNIVERSITY