Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

On the unknottedness of the fixed point set of differentiable circle group actions on spheres—P. A. Smith conjecture


Author: Wu-Yi Hsiang
Journal: Bull. Amer. Math. Soc. 70 (1964), 678-680
DOI: https://doi.org/10.1090/S0002-9904-1964-11158-7
MathSciNet review: 0169238
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. A. Borel, Seminar on transformation groups, Annals of Mathematic Studies No.46, Princeton Univ. Press, Princeton, N. J., 1960. MR 116341
  • 2. R. H. Fox, On knots whose points are fixed under a periodic transformation of the 3-sphere, Osaka Math. J. 10 (1958), 31-35. MR 131872
  • 3. C. H. Giffen, Periodic sphere transformations with knotted fixed point sets, Notices Amer. Math. Soc. 11 (1964), 341.
  • 4. W.-Y. Hsiang, On the classification of SO(n) actions on simply connected π-mani-folds of dimension less than 2n — l (to appear).
  • 5. B. Mazur, Symmetric homology spheres, Illinois J. Math. 6 (1962), 245-250. MR 140102
  • 6. B. Mazur, Corrections to my paper, "Symmetric homology spheres," Illinois J. Math. 8 (1964), 175. MR 157379
  • 7. D. Montgomery and L. Zippin, Topological transformation groups, Interscience, New York, 1955. MR 73104
  • 8. P. A. Smith, Transformation of finite period. II, Ann. of Math. (2) 40 (1939), 690-711. MR 177
  • 9. J. Stallings, On topologically unknotted spheres, Ann. of Math. (2) 77 (1963), 490-503. MR 149458


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1964-11158-7

American Mathematical Society