THE EQUIVALENCE OF THE ANNULUS CONJECTURE
AND THE SLAB CONJECTURE

BY CHARLES GREATHOUSE

Communicated by M. L. Curtis, May 29, 1964

In [1], the author showed that the Slab Conjecture implies the Annulus Conjecture.

The purpose of this paper is to show that the Annulus Conjecture implies the Slab Conjecture for \(n > 3 \) and hence the two conjectures are equivalent for \(n > 3 \).

\(R^n, S^n \) will denote \(n \)-space and the \(n \)-sphere, respectively. A \(k \)-manifold \(N \) is embedded in a locally flat manner in an \(n \)-manifold \(M \) provided each point of \(N \) has a neighborhood \(U \) in \(M \) such that \((U, U \cap N) \approx (R^n, R^k) \).

The Annulus Conjecture. Let \(S^1 _1, S^2 _1 \) be disjoint locally flat \((n-1) \)-spheres embedded in \(S^n \) and let \(M \) be the submanifold of \(S^n \) bounded by \(S^1 _1 \cup S^2 _1 \). Then \(M \approx S^{n-1} \times [0, 1] \).

The Slab Conjecture. Let \(R^1 _1, R^2 _1 \) be disjoint locally flat \(n-1 \) spaces embedded as closed subsets of \(R^n \) and let \(M \) be the submanifold of \(R^n \) bounded by \(R^1 _1 \cup R^2 _1 \). Then \(M \approx R^{n-1} \times [0, 1] \).

Theorem. The Annulus Conjecture implies the Slab Conjecture for \(n > 3 \).

Proof. Let \(R^1 _1, R^2 _1 \) be disjoint locally flat \(n-1 \) spaces embedded as closed subsets of \(R^n \), \(n > 3 \), and let \(M \) be the submanifold of \(R^n \) bounded by \(R^1 _1 \cup R^2 _1 \). Let \(S^n = R^n \cup \{p\} \) be the one-point compactification of \(R^n \) and \(S^i _1 = R^i _1 \cup \{p\} \) for \(i = 1, 2 \). By the corollary to Theorem 2 of [2], \(S^i _1 \) is flat for \(i = 1, 2 \). Hence, we may assume that \(S^1 _1 = S^n \), that \(S^2 _1 \) lies in the northern hemisphere of \(S^n \), and that \(S^1 _1 \cap S^2 _1 = \{p\} \).

Let \(B^{n-1} \) be the unit ball in \(S^i _1 = S^{n-1} \) with center \(p \), \(r \) the south pole of \(S^n \), \(q \) the midpoint of the line segment joining \(p \) to \(r \) in \(S^n \), \(L \) the line segment joining \(p \) to \(q \) in \(S^n \), and \(B^r, B^q \) the cones \((n\)-balls) in \(S^n \) with bases \(B^{n-1} \) and cone points \(r, q \) respectively. (See Figure 1.) Now, let \(S^i _2 = [S^i _1 \cup B^i _r] - \text{Int}(B^{n-1}) \). Then \(S^i _2 \) is a flat \(n-1 \) sphere in \(S^n \) and \(S^1 _2 \cap S^2 _2 = \emptyset \). By the Annulus Conjecture, \(M \cup B^r \approx A^n \) is an \(n \)-annulus. We will complete the proof by showing that \(M \cup \{p\} \) is homeomorphic to the decomposition space \(A^n/L \) and applying Lemma 3 of [3].
By Theorem II.3 of [1], \(M_2 = M - R_{n-1} \approx R_{n-1} \times [0, 1) \) under some homeomorphism \(h \). Take \(T = h^{-1} \left[h(B_{n-1} - p) \times [0, \frac{1}{2}] \right], T_r = T \cup B^n_r, \) and \(T_q = T \cup B^n_q \). Then \(T_r, T_q \) are \(n \)-balls with \(T_q \subseteq T_r \).

There is a natural map \(f \) of \(T_r \) onto itself such that the following hold:

1. \(f | T_r = 1 \),
2. \(f | T_r - L \) is a homeomorphism,
3. \(f(L) = p \),
4. \(f(\text{CL}(B^n_r - B^n_q)) = B^n_q \).

\(f \) is obtained by pushing \(B^n_q \) up into \(T \cup \{ p \} \) making use of the parameterization induced on \(T \) by \(h^{-1} \). \(f \) extends to a map of \(S^n \) onto itself by \(f | S^n - T_r = 1 \).

Since \(f(A^n) = M \cup \{ p \}, f | A^n - L \) is a homeomorphism and \(f(L) = p \), it follows that \(M \cup \{ p \} \approx A^n / L \). By Lemma 3 of [3], since \(L \) is a flat arc in \(A^n \) with endpoints \(p \in S_{n-1}^2, q \in S_{n-1}^3 \) and \(L - (p \cup q) \subseteq \text{Int} A^n \), \(A^n / L \) is a pinched annulus, that is, \(A^n / L \) is homeomorphic to the one-point compactification of \(R_{n-1} \times [0, 1] \). Thus \(M = R_{n-1} \times [0, 1] \) and the theorem is proved.

Corollary. The Annulus Conjecture is equivalent to the Slab Conjecture for \(n > 3 \).

References

3. ———, *Some relations between the Annulus Conjecture and union of flat cells theorems* (to appear).

University of Tennessee