\[\| F \|_{\mathcal{F}_p} \leq 2K_p N^{1/q - 1} \gamma^{1/p - 1} = 2K_p \varepsilon^{1/q - 1} \gamma^{1/p - 1} \]
so that, if \(N \) is large enough \(\| F \|_{\mathcal{F}_p} < \varepsilon \). Put
\[E_{\varepsilon,p} = \{ x ; F(x) = 1 \} . \]
Now \(F(x) = 1 \Leftrightarrow f_\gamma (\lambda, x) = 1 \) for all \(j \), so that measure \((E_{\varepsilon,p}) \geq 2\pi - N \gamma = 2\pi - \varepsilon . \)

Let \(\mu \) be carried by \(E_{\varepsilon,p} \), \(\mu \subset \mathcal{F}_p \), then
\[| \hat{\mu} (n) | = | \int e^{-inx} d\mu | = | \sum \hat{F} (m-n) \hat{\mu} (m) | \leq \| \hat{F} \|_{\mathcal{F}_p} \| \mu \|_{\mathcal{F}_p} < \varepsilon | \mu |_{\mathcal{F}_p} \]
which proves the lemma.

Theorem. There exists a set \(E \) of positive measure on \(T \) which is a set of uniqueness for \(\bigcup_{p<2} \mathcal{L}^p \).

Proof. Take \(\varepsilon_n = 10^{-n} \), \(p_n = 2 - \varepsilon_n \),
\[E = \cap_{n=36}^{\infty} E_{\varepsilon_n, p_n} . \]

Yale University

INJECTIVE ENVELOPES OF BANACH SPACES

BY HENRY B. COHEN

Communicated by V. Klee, July 30, 1964

1. Introduction. We consider the category whose objects are Banach spaces and whose maps are the linear operators of norm not exceeding 1 from one Banach space into another. A Banach space \(Z \) is injective if it has the same Hahn-Banach extension property that is possessed by the scalars (real or complex); that is, any \(Z \)-valued map from a subspace of a Banach space \(Y \) extends to a \(Z \)-valued map of the same norm on all of \(Y \). An injective envelope of a Banach space \(B \) is a pair \((I, \varepsilon B) \), \(\varepsilon B \) an injective Banach space and \(I : B \rightarrow \varepsilon B \) a linear isometry (our linear isometries need not be onto), such that the only subspace of \(\varepsilon B \) that is injective and contains \(I[B] \) is \(\varepsilon B \) itself. In this note, we demonstrate the existence and uniqueness of the injective envelope of a Banach space and, in the process, we give a short proof of the fact that an injective Banach space is linearly isometric with a function space \(C(M) \), \(M \) compact Hausdorff and extremally disconnected.
For X a compact Hausdorff space, $C(X)$ denotes the Banach space of all continuous scalar-valued functions on X with the sup norm.

A topological space is \textit{extremally disconnected} if the closure of every open subset is open; a continuous function is \textit{minimal} if it is onto, but no longer onto when restricted to an arbitrary closed proper subset of its domain. Fundamental to our construction is Gleason’s result [1]: for any compact Hausdorff space X, there is a minimal continuous function $i: M \to X$ with M compact Hausdorff and extremally disconnected. The writer wishes to thank J. Isbell for suggesting the problem of determining the injective envelope of a Banach space; Isbell conjectured that the injective envelope of a function space $C(X)$ would be $(I, C(M))$ where I is the linear isometry induced by Gleason’s function $i: M \to X$.

Theorem 1 (Nachbin-Goodner-Hasumi). \textit{If M is compact Hausdorff and extremally disconnected, then $C(M)$ is injective.}

Proof. Phillips [6] showed that the Banach space $m(D)$ of bounded scalar-valued functions on a set D is injective; consequently, a function space $C(K)$, K the Stone-Cech compactification of a discrete space, is injective. Given a compact Hausdorff extremally disconnected space M, the combined results of Gleason [1] and Rainwater [7] imply that M is a retract of a suitably chosen Stone-Cech compactification K of a discrete space. It follows that $C(M)$ is a retract of $C(K)$ and therefore injective.

2. **Construction of the envelope.** For any subset Q of a real or complex linear space, EQ denotes the set of extremal points of Q and coQ the convex hull. For any Banach space B, B^* denotes the adjoint space and B^{**} the unit sphere of B^*; cl^*Q denotes the weak* closure of a subset Q of B^*. The set of all scalars of norm 1 is denoted by C_0.

Let B be a Banach space. Let U and X be subsets of B^* satisfying

1. X is weak* closed; U is contained in $EB^* \cap X$.
2. $cl^*U = X$.
3. $cl^*C_0U = cl^*EB^*$. (4) For each u in U, $C_0u \cap X = \{u\}$. For B real, such a U and X are easily constructed as follows. Let W be a subset of cl^*EB^* maximal with respect to being both open in cl^*EB^* and disjoint from $-W$. Then $W \cup -W$ is weak* dense in cl^*EB^*; hence, so is $(EB^* \cap W) \cup -(EB^* \cap W)$. Let $U = EB^* \cap W$ and $X = cl^*U$.

For B complex, proceed as follows. Call a subset W of B^* deleted if $w \in W$ implies $kw \in W$ for all but exactly one k in C_0, and say that W is \textit{circled} if $C_0W \subseteq W$. If W is circled, so is cl^*W; in particular, cl^*EB^* is circled. Every nonvoid open circled subset W of cl^*EB^* contains a nonvoid open deleted subset. For choose w in W and b in B such
that \(w(b) \subseteq D \), the open unit disc in the plane with the interval \([0, 1)\) removed. If \(J(b) \) is the weak* continuous functional determined by \(b \), i.e., \(J(b)(z) = z(b) \) for all \(z \) in \(B^* \), then \(J(b)^{-1}(D) \cap W \) is the required set. Using Zorn's lemma, let \(W \) be a subset of \(\text{cl}^*EB^* \) maximal with respect to being both open in \(\text{cl}^*EB^* \) and deleted. Then \(C_0W \) is dense in \(\text{cl}^*EB^* \). Since \(C_0W \) is open and dense in \(\text{cl}^*EB^* \), \(EB^* \cap C_0W \) is dense there, too. Let \(U \) denote the set of all \(u \) in \(EB^* \) such that \(ku \subseteq W \) for all \(k \) in \(C_0 \), \(k \neq 1 \). Define \(X = \text{cl}^*U \). Thus (1) and (2) are satisfied trivially, and (3) follows from the equality \(C_0U = EB^* \cap C_0W \). The fact that \(W \) and \(X \) are disjoint yields (4).

With \(U \) and \(X \) thus chosen, \(X \) is a compact Hausdorff space; let \(i: M \rightarrow X \) be Gleason's function. Let \(I: B \rightarrow C(M) \) be defined by \(I(b)(m) = i(m)(b) \). The continuity of \(I \) is used to show that \(I \) is well defined, \(I \) is obviously linear, and \(I \) is a map because \(X \) is contained in \(B^* \). To show \(I \) is an isometry, let \(b \subseteq B \) and choose \(v \in EB^* \) such that \(\|v\| = |v(b)| \). Using (3), let \(v(a) \) be a net in \(C_0U \) converging to \(v \) in the weak* topology; hence, \(|v(a)(b)| \) converges to \(\|b\| \). Given \(\epsilon > 0 \), choose \(\alpha \) such that \(\|b\| - \epsilon < |v(a)(b)| \). For a unique \(k \) in \(C_0 \), \(v(a) = ku \) in \(U \). Thus \(\|b\| - \epsilon < \|u(b)\| = |i(m')(b)| = |I(b)(m')| \leq \|I(b)\| \) for a suitable \(m' \in M \). Since \(\epsilon > 0 \) was arbitrary, \(\|b\| \leq \|I(b)\| \).

Theorem 2. The pair \((I, C(M)) \) is the essentially unique injective envelope of \(B \); indeed, given a Banach space \(Y \), a linear isometry \(G: B \rightarrow Y \), and any map \(H: C(M) \rightarrow Y \) such that \(H \circ I = G \), then \(H \) is a linear isometry.

Proof. We first prove \(H \) is a linear isometry; note, \(\|H\| \leq 1 \) by assumption. Let \(f \) belong to \(C(M) \) and \(\epsilon > 0 \) be given. Assume that \(f \) takes on the value \(\|f\| \), no restriction since we are interested in the norm of \(f \) and can therefore work with \(kf \) for any \(k \) in \(C_0 \). Set \(M(\epsilon) \) equal to the set of all \(m \) in \(M \) such that \(f(m) \) lies in \(D(\epsilon) \), the open disc in the plane of radius \(\epsilon \) centered at \(\|f\| \). Because \(i \) is minimal, \(i[M \setminus M(\epsilon)] \) is a proper closed subset of \(X \). By the fact (2) that \(U \) is dense in \(X \), let \(u \) belong to \(U \) and to \(X \setminus i[M \setminus M(\epsilon)] \); consequently, \(i^{-1}(u) \subseteq M(\epsilon) \). Letting \(e: M \rightarrow C(M)^* \) denote the homeomorphism \(e(m)(g) = g(m) \), \(e[i^{-1}(u)] \) is a collection of functionals whose values at \(f \) lie in \(D(\epsilon) \). Consequently,

\[
\text{if } z \text{ is in cl}^*e[i^{-1}(u)], \quad \text{then } \|f\| - \epsilon \leq |z(f)|.
\]

Next, suppose \(z \) is in \(EC(M)^* \cap I^{*^{-1}}(u) \). Then \(z = ke(m) \) for some \(m \) in \(M \), \(k \) in \(C_0 \); and so, \(u = I^*z = kI^*e(m) = ki(m) \). Therefore \(i(m) \) is a member of \(C_0u \cap X \) so by (4), \(i(m) = u \) and \(k = 1 \). Therefore \(m \) is in \(i^{-1}(u) \) and \(z = e(m) \) is in \(e[i^{-1}(u)] \). Taking closed convex hulls:
The Hahn-Banach theorem applied to $u \circ G^{-1}$ yields a y in Y such that $G^*y = u$; hence, $I^*(H^*y) = (H \circ I)^*y = G^*y = u$. Consequently H^*y is in $C(M)^* \cap I^{*-1}(u)$ a set contained in $cl^{*co}(EC(M)^* \cap I^{*-1}(u))$ (take the weak* closed convex hull of both sides of $E(C(M)^* \cap I^{*-1}(u)) \subseteq EC(M)^* \cap I^{*-1}(u)$, reducing the left-hand side of the resulting inclusion by means of the Krein-Milman theorem). Using (b) and then (a), $||f|| - \epsilon \leq |H^*y(f)| = |y(H(f))| \leq ||H(f)||$. Since ϵ was arbitrary, $||f|| \leq ||H(f)||$. Therefore, H is an isometry.

Suppose Z is a subspace of $C(M)$ containing $I[B]$. If Z is injective, there is a map $H: C(M) \to Z$ such that $H(z) = z$ for all z in Z. Letting $G: B \to Z$ denote the map I with range restricted, $H \circ I = G$ so, by the above, H is an isometry. But the only way that H can be 1—1 is for Z to be all of $C(M)$. Therefore, $(I, C(M))$ is an injective envelope of B.

This injective envelope is unique in the sense that if (G, Y) is another injective envelope of B, there is a linear isometry $H: C(M) \to Y$ onto such that $H \circ I = G$. For Y injective provides a map $H: C(M) \to Y$ such that $H \circ I = G$, and the lemma implies that H is an isometry. This means that $H[C(M)]$ is an injective Banach space which, as a subspace of Y, contains $G[B]$. Therefore, $H[C(M)] = Y$; i.e., H is onto.

Theorem 3 (Kelley-Hasumi). An injective Banach space B is linearly isometric with a function space $C(M)$, M compact Hausdorff and extremally disconnected.

Proof. Suppose B is injective. Then if $I: B \to C(M)$ is the map constructed above, $I[B]$ is injective and therefore equal to $C(M)$.

References

University of Pittsburgh