The cohomology of the Steenrod algebra; stable homotopy groups of spheres

Author:
J. Peter May

Journal:
Bull. Amer. Math. Soc. **71** (1965), 377-380

DOI:
https://doi.org/10.1090/S0002-9904-1965-11302-7

MathSciNet review:
0185596

Full-text PDF

References | Additional Information

**1.**J. F. Adams,*On the structure and applications of the Steenrod algebra*, Comm. Math. Helv. 32 (1958), 180-214. MR**96219****2.**J. F. Adams,*Stable homotopy theory*(lecture notes), Univ. of California, Berkeley, Calif., 1961.**3.**H. H. Gershenson,*Relationships between the Adams spectral sequence and Toda's calculations of the stable homotopy groups of spheres*, Math. Z. 81 (1963), 223-259. MR**151976****4.**J. P. May,*The cohomology of restricted Lie algebras and of Hopf algebras*, Bull. Amer. Math. Soc. 71 (1965), 372-377. MR**185595****5.**H. Toda,*p-primary components of homotopy groups*. I,*Exact sequences in the Steenrod algebra*. II,*mod p Hopf invariant*. III,*Stable groups of the sphere*. IV,*Compositions and toric constructions*, Mem. College Sci. Univ. Kyoto 31 (1958), 129-142; 143-160; 191-210; ibid. 32 (1959), 297-332. MR**105682****6.**H. Toda,*Composition methods in homotopy groups of spheres*, Princeton Univ. Press, Princeton, N. J., 1962. MR**143217**

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1965-11302-7