In this paper we show that if K and L are n-complexes, then K and L are isomorphic iff the 1-sections of the first derived complexes of K and L are isomorphic. This provides a low-dimensional method for establishing the isomorphism (homeomorphism) of complexes (polyhedra).

Throughout, s_p will denote a (rectilinear) p-simplex with vertices a^0, a^1, \ldots, a^p; K will denote a (finite geometric) complex with n-section K^n and first derived complex K'. The closed star of a vertex a of K, $\text{st}(a)$, is the set of simplexes of K having a as a face and all their faces. For more details see [2].

Definition 1. An n-complex K is full provided, for any subcomplex L of K which is isomorphic to s_p, $2 \leq p \leq n$, L^0 spans a p-simplex of K.

Theorem 1. Suppose K and L are full n-complexes. Then K and L are isomorphic iff K^1 and L^1 are isomorphic.

Proof. We need only consider the case when K^1 and L^1 are isomorphic. Let $\nu: K^1 \rightarrow L^1$ be an admissible vertex transformation of K^1 onto L^1 with an admissible inverse. Then a^0, a^1 span a 1-simplex of K iff $\nu(a^0), \nu(a^1)$ span a 1-simplex of L. Furthermore, for any p, $2 \leq p \leq n$, if a^0, a^1, \ldots, a^p span a p-simplex s_p of K, then $\nu(s_p)$ is isomorphic to s_p. So, using the fullness of L, we get that $(\nu(s_p))^0$
\[
\{v(a^0), v(a^1), \ldots, v(a^p)\} \text{ spans a } p\text{-simplex of } L. \text{ Similarly, if }
\{v(a^0), v(a^1), \ldots, v(a^p)\} \text{ spans a } p\text{-simplex of } L, \text{ then } \{a^0, a^1, \ldots, a^p\}
\text{ spans a } p\text{-simplex of } K. \text{ Hence, } v \text{ is an admissible vertex transformation of } K \text{ onto } L \text{ with an admissible inverse and so } K \text{ and } L \text{ are isomorphic.}
\]

Lemma 1. If \(K \) is an \(n \)-complex, then \(K' \) is a full \(n \)-complex.

Proof. Suppose \(L \) is a subcomplex of \(K' \) and \(L \) is isomorphic to \(s^p_n, 2 \leq p \leq n. \) Then there is a barycenter \(b \) of a \(q \)-simplex of \(K, p \leq q \leq n, \) such that \(L \subseteq st(b). \) Hence \(L^0 \) spans a \(p \)-simplex of \(K. \)

Theorem 2. If \(K \) and \(L \) are \(n \)-complexes, then \(K \) and \(L \) are isomorphic iff \((K')^1 \) and \((L')^1 \) are isomorphic.

Proof. Suppose \(K \) and \(L \) are isomorphic. Then \(K' \) and \(L' \) are isomorphic \(n \)-complexes. Since they are both full (Lemma 1) we can apply Theorem 1 to get that \((K')^1 \) and \((L')^1 \) are isomorphic.

Now assume that \((K')^1 \) and \((L')^1 \) are isomorphic. Then Theorem 1 implies \(K' \) and \(L' \) are isomorphic and so \(K \) and \(L \) are isomorphic (see [1]).

References

University of Washington