A factor is a ring of operators whose center consists only of scalar multiples of the identity. Murray and von Neumann have defined various kinds of factors, calling a continuous factor with finite trace a type II$_1$ factor [3], [4]. Dixmier began the detailed study of maximal abelian subalgebras of type II$_1$ factors. He defined regular, semi-regular but not regular, and singular maximal abelian subalgebras, and showed that at least one of each type exists [2]. His II$_1$ factors turn out to be hyperfinite in algebraic type. The factors we consider are also hyperfinite. In this note we discuss their semi-regular subalgebras, and present an isomorphism invariant which allows us to obtain new existence results.

Let \mathfrak{A} be a hyperfinite factor, \mathcal{R} a maximal abelian subalgebra of \mathfrak{A}. For any subring D of \mathfrak{A}, $N(D)$ is the ring generated by all unitaries which leave D invariant, and $N^k(D) = N[N^{k-1}(D)]$. In particular, we let $N(\mathcal{R}) = \mathfrak{R}$. \mathcal{R} is semi-regular but not regular iff \mathfrak{R} is a factor not equal to \mathfrak{A}. In [5] we defined an isomorphism invariant for such subalgebras, which we called length. If $\mathcal{R} \subset \mathcal{P} \subset N(\mathcal{P}) \subset \cdots \subset N^L(\mathcal{P}) = \mathfrak{A}$, (when $\mathcal{R} \neq \mathcal{P} \neq N(\mathcal{P}) \neq \cdots \neq N^L(\mathcal{P})$) then L is the length of \mathcal{R}. By constructing a semi-regular subalgebra \mathcal{R} of every length $L = 1, 2, 3, \ldots$, we obtained an infinite sequence of subalgebras which could not be pairwise connected by $*$-automorphisms of \mathfrak{A}.

Another possible invariant is product type. Suppose \mathcal{R} has length L. Then \mathcal{R} is of product type α, $0 \leq \alpha \leq L$, iff the following holds: For every t, $1 \leq t \leq \alpha$, there exist S_1 and S_2 in $N^{t-1}(\mathcal{P}) \cap N^t(\mathcal{P})$ such that the product $S_1S_2 \neq 0$ is in $N^{t-1}(\mathcal{P}) \cap N^t(\mathcal{P})$. But for s such that $\alpha \leq s \leq L$, every T_1 and T_2 in $N^{s-1}(\mathcal{P}) \cap N^s(\mathcal{P})$ have their product T_1T_2 in $N^{s-1}(\mathcal{P})$. (Taking of orthogonal complements is meaningful, for within a II$_1$ factor, the weak, strong, and Hilbert space (metric) closures of a subalgebra all coincide [4]. The metric topology is based on the norm derived from the scalar product $(A, B) = \text{Tr}(B^*A)$ for A, B in \mathfrak{A}.)

Theorem 1. Suppose \mathcal{R} and \mathcal{R}' are semi-regular but not regular subalgebras of \mathfrak{A}, and \mathcal{R} has product type α, while \mathcal{R}' has product type β.

1 This work was done as part of NSF Research Participation for College Teachers, the University of Oklahoma, summer, 1964.
\(\alpha', \alpha \neq \alpha' \). Then there does not exist a \(*\)-automorphism \(\Theta \) of \(\mathfrak{A} \) such that \(\Theta (R') = R \).

Proof. We can assume \(\alpha' > \alpha \), so that \(\alpha' \geq \alpha + 1 \). Letting \(t = \alpha + 1 \) in the definition of product type, we know we can choose \(S_1, S_2 \) in \(N^\alpha(P') \cap N^{\alpha+1}(P') \) such that \(S_1 S_2 = S_3 \neq 0 \) is in this set also. Suppose there exists \(\Theta \) such that \(\Theta (R') = R \). By a standard argument, it follows that \(\Theta [N(R')] = N(R) \) or \(N(P') = P \), and inductively, \(\Theta [N^\alpha(P')] = N^\alpha(P) \) and \(\Theta [N^{\alpha+1}(P')] = N^{\alpha+1}(P) \). Let \(\Theta (S_i) = T_i \), so that \(T_i \in N^{\alpha+1}(P) \) for \(i = 1, 2, \) or \(3 \). Now if \(A \in N^{\alpha}(P') \), then \((S_i, A) = 0 \) = \(\text{Tr}(A * S_i) = \text{Tr}[\Theta(A * S_i)] \) (since the trace function is unique) = \(\text{Tr}[(\Theta(A) * \Theta(S_i)) = (\Theta(S_i), \Theta(A))] = (T_i, \Theta(A)) = 0 \). As \(A \) ranges over \(N^\alpha(P') \), \(\Theta(A) \) takes on all values in \(N^\alpha(P) \), so we must have \(T_i \in N^\alpha(P) \). Thus \(T_i \) is in \(N^\alpha(P) \cap N^{\alpha+1}(P) \) for \(i = 1, 2, \) or \(3 \).

Now \(\alpha + 1 > \alpha \), so letting \(s = \alpha + 1 \) and considering the product type of \(\mathfrak{A} \), it follows that \(T_1 T_2 \) is in \(N^s(P) \). But \(T_1 T_2 = \Theta(S_i) \Theta(S_2) = \Theta(S_1 S_2) \) = \(\Theta(S_3) = T_3 \). Since \(T_3 \) is in \(N^s(P) \), this leads to a contradiction. \((T_3 \neq 0 \) since \(S_3 \neq 0 \) and \(\Theta \) is an automorphism.) Therefore we cannot have \(\Theta (R') = R \).

Theorem 2. There are \((L+1) \) semi-regular subalgebras of length \(L \) which cannot be pairwise connected by \(*\)-automorphisms of \(\mathfrak{A} \). Specifically, these have product types \(\alpha = 0, 1, 2, \ldots, L \).

We give an indication of the proof, which is constructive and depends on the results of [5]. For each \(n = 1, 2, 3, \ldots \), the matrix units (of all the \(2^p \) by \(2^p \) matrix algebras, where \(p \) is an odd multiple of \(n \)) are divided into \(n \) orthogonal sets. These are called \(\mathfrak{S}_0, \mathfrak{S}_1, \ldots, \mathfrak{S}_n \), and the set \(\mathfrak{C}_k = \bigcup_{n=0}^{n} \mathfrak{S}_n \). The ring \(R(\mathfrak{C}_k) \) is defined as the weak closure of the algebra generated by matrix units in \(\mathfrak{C}_k \). Then for each \(n \) and for \(0 \leq \alpha \leq n - \alpha \), we construct \(R_n(\alpha) \), a semi-regular subalgebra. The chain for \(R_n(\alpha) \) is such that \(N^t(P_n(\alpha)) = R(\mathfrak{C}_n) \) for \(0 \leq \alpha \leq n \) and \(N^t(P_n(\alpha)) = R(\mathfrak{C}_{a+\alpha}) \) for \(\alpha \leq s \leq n - \alpha \). Since \(N^{n-\alpha}(P_n(\alpha)) = R(\mathfrak{C}_n) = \mathfrak{A} \), we have \(L = n - \alpha \).

But these properties are sufficient to show that \(R_n(\alpha) \) has product type \(\alpha \). So for any \(L = 1, 2, 3, \ldots \), we can take \(\alpha = 0, 1, \ldots, L \), and \(n = \alpha + L \). Then, by Theorem 1, there does not exist an \(*\)-automorphism \(\Theta \) of \(\mathfrak{A} \) such that \(\Theta (R_{\alpha+L}(\alpha')) = R_{\alpha+L}(\alpha') \) when \(\alpha \neq \alpha' \).

A generalization of the concept of product type permits one to construct \(2^L \) nonisomorphic semi-regular maximal abelian subalgebras of every length \(L \). However, the construction becomes extremely involved.
BIBLIOGRAPHY

THE COLLEGE OF ST. CATHERINE, ST. PAUL, MINNESOTA

PURE SUBGROUPS HAVING PRESCRIBED SOCLES

BY PAUL HILL

Communicated by R. S. Pierce, January 22, 1965

Let $B = \sum B_n$ be a direct sum of cyclic groups where, for each positive integer n, $B_n = \sum C(p^n)$ is zero or homogeneous of degree p^n where p is a fixed prime. Denote by \bar{B} the torsion completion of B in the p-adic topology. Following established terminology [1], we refer to \bar{B} as the closed primary groups with basic subgroup B.

A primary group G is said to be pure-complete if each subsocle of G supports a pure subgroup of G. A semi-complete group was defined by Kolettis in [6] to be a primary group which is the direct sum of a closed group and a direct sum of cyclic groups.

For a particular B, I exhibited in [3] nonisomorphic pure subgroups H and K of \bar{B} having the same socle. Using this example, Megibben [7] was the first to show the existence of a primary group without elements of infinite height which is not pure-complete. We mention that each semi-complete group is pure-complete [4]. The purpose of this note is to announce the following theorem and corollaries; proofs will appear in another paper.

THEOREM. Suppose that B is unbounded and countable and that S is any proper dense subsocle of \bar{B} such that $|S| = 2^{\aleph_0}$. Then S supports more than 2^{\aleph_0} pure subgroups of \bar{B} which are isomorphically distinct.

The theorem has the following implications.

COROLLARY 1. Suppose that B is unbounded and countable and that