A SIMPLE PROOF OF THE RABIN-KEISLER THEOREM

BY C. C. CHANG

Communicated by D. Scott, March 29, 1965

For terminology and notation we refer to the two relevant papers of Rabin [3] and Keisler [1]. The following theorem is proved in [1] and is an improvement of the main result of [3].

THEOREM (RABIN-KEISLER). Let \(\alpha \) be an infinite nonmeasurable cardinal. Then every model of power \(\alpha \) has a proper elementary extension of the same power if and only if \(\alpha = \alpha^\omega \).

The simple proof referred to in the title does not require the elaborate apparatus of limit ultrapowers (see [1]) or the generalized continuum hypothesis and that \(\alpha \) be accessible (see [3]). On the other hand, the proof owes much to certain ideas in [3] and Keisler [2].

One direction of the theorem follows easily from elementary properties of ultrapowers. The following lemma will establish the other direction.

Lemma. Suppose \(\alpha \) is an infinite nonmeasurable cardinal, \(\mathcal{M} = \langle A, R, S, \ldots \rangle \) is the complete model over a set \(A \) of power \(\alpha \), and \(\mathcal{M}' = \langle A', R', S', \ldots \rangle \) is a proper elementary extension of \(\mathcal{M} \). Then \(|A'| \geq \alpha^\omega \).

Proof. By a well-known result in set theory (using finite sequences of elements from \(A \)), there exists a family

\[
P = \{ P_\beta : \beta < \alpha^\omega \}
\]

of countably infinite subsets \(P_\beta \) of \(A \) such that \(|P| = \alpha^\omega \) and \(P_\beta \cap P_\gamma \) is finite whenever \(\beta \neq \gamma \). Well-order each \(P_\beta \),

\[
P_\beta = \{ p_\beta n : n < \omega \}.
\]

Let \(x \in A' - A \), and let

\[
D = \{ Q : Q \subset A \text{ and } x \in Q' \}.
\]

It is easily seen that \(D \) is a nonprincipal ultrafilter over \(A \). By hypothesis \(D \) is countably incomplete. Hence, there exists a strictly decreasing sequence

\[
A = Q_0 \supset Q_1 \supset \cdots \supset Q_n \supset \cdots
\]

1 Research supported in part by NSF Grant GP220.
of sets \(Q_n \subseteq D \) such that \(\cap_n Q_n = 0 \). Fix \(\beta \prec \alpha^w \). Define a function \(F_\beta \) mapping \(A \) onto \(P_\beta \) as follows: for each \(a \in A \),

\[
F_\beta(a) = p_{\beta n} \text{ if and only if } a \in Q_n - Q_{n+1}.
\]

Notice that the function \(F_\beta \) (considered as a binary relation) and the sets \(P_\beta, Q_n \) are among the relations listed in \(\mathfrak{M} \). Since \(\mathfrak{M} \prec \mathfrak{M}' \), it follows that \(F'_\beta \) is a function mapping \(A' \) onto \(P'_\beta \). Furthermore, for each \(a' \in A' \),

\[
F'_\beta(a') = p_{\beta n} \text{ if and only if } a' \in Q'_n - Q'_{n+1}.
\]

Since \(x \in Q_n' \) for all \(n \), we have

\[
F'_\beta(x) \in P'_\beta - P_\beta.
\]

Using the fact that \(P_\beta \cap P_\gamma \) is finite whenever \(\beta \neq \gamma \), we have \((P_\beta \cap P_\gamma) = P'_\beta \cap P'_\gamma = P_\beta \cap P_\gamma \). Hence

\[
F'_\beta(x) \neq F'_\gamma(x), \text{ whenever } \beta \neq \gamma.
\]

So \(|A'| \geq \alpha^w \) and the lemma is proved.

References