Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Some homotopy groups of Stiefel manifolds


Authors: C. S. Hoo and M. E. Mahowald
Journal: Bull. Amer. Math. Soc. 71 (1965), 661-667
DOI: https://doi.org/10.1090/S0002-9904-1965-11387-8
MathSciNet review: 0177412
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 0. J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math.(2) 72 (1960), 20-104. MR 141119
  • 1. M. G. Barratt and M. E. Mahowald, The metastable homotopy of 0(n), Bull. Amer. Math. Soc. 70 (1964), 758-760. MR 182004
  • 2. M. G. Barratt and M. E. Mahowald, The metastable homotopy of S (to appear).
  • 3. A. Borel, La cohomologie mod 2 de certains espaces homogenes, Comment. Math. Helv. 27 (1953), 165-197. MR 57541
  • 4. C. S. Hoo, Homotopy groups of Stiefel manifolds, Ph.D. Thesis, Syracuse University, Syracuse, N. Y., 1964 (mimeographed notes, Northwestern University).
  • 5. I. M. James, Cross-sections of Stiefel manifolds, Proc. London Math. Soc. 8 (1958), 536-547. MR 100840
  • 6. M. E. Mahowald, Obstruction theory in orientable fiber bundles, Trans. Amer. Math. Soc. 110 (1964), 315-349. MR 157386
  • 7. G. F. Paechter, The group π(V). I, Quart. J. Math. Oxford Ser. 7 (1956), 249-268.
  • 8. H. Toda, Vector fields on spheres, Bull. Amer. Math. Soc. 67 (1961), 408-412. MR 131282


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1965-11387-8

American Mathematical Society